

FARGO3D User Guide

Contents:

	Introduction
	A foreword about the terminology used in this manual

	License

	First Steps
	Getting FARGO3D

	Installing

	First run

	First parallel run

	First GPU run

	First Parallel GPU run

	Directory tree
	Directories

	setups/SETUP directory

	Make Process
	Makefile (Stage1)

	scripts/make.py (Stage2)

	src/makefile (Stage3)

	FARGO_ARCH environment variable

	Boundaries
	How are boundary conditions applied?

	boundparser.py

	Boundaries files format

	centering.txt

	boundary_template.c

	boundaries.txt

	SETUP.bound

	Common errors

	Defining boundaries by hand

	Mesh and Fields
	Mesh

	Fields

	Working with fields

	Fields on the GPU

	Useful variables

	Default SETUPS
	fargo

	Orszag-Tang Vortex

	Sod shock tube 1D

	MRI

	.opt files

	N-Body solver
	Introduction

	Removing the default central star

	Planets which are stars

	Initialization of the position and velocities of the stellar objects

	Indirect term

	Initial eccentricity and inclination

	Convenience parameters: PLANETMASS, SEMIMAJORAXIS and ORBITALRADIUS

	Correcting the shift of resonances

	Units
	Introduction

	Specifying the unit system

	Rescaling the input parameters

	Specifying the scaling rules

	Defining a new SETUP
	Blob test

	Initial state:

	Making the executable:

	Plotting your new setup:

	Run-time visualization.
	How does it work?

	Backends

	Outputs
	Scalar fields

	Summary files

	Domain files

	Variables

	Grid files

	Planet files

	Datacubes

	Monitoring

	Communications
	GPU/CPU communications

	MPI

	MPI-CUDA

	Spawning a job on a cluster of GPUs: a primer

	Cuda translator (C2CUDA.py).
	FARGO3D Mesh Functions

	How the script works

	Common errors:

	Execution flags.

	VTK Compatibility.

	Improving CUDA Performance
	MPICUDA

	GPU vs CPU Benchmarking
	Some acceleration factors

	The FARGO_SPEEDUP macrocommand

	Developing a complex setup
	Setup folder

	Initial Condition

	Time dependent explosions

	Incorporating our kernel

	Using FARGO_DEBUG

	Summary

	Tips, Tricks, Todos and Troubleshooting
	How do I add a new parameter to a setup ?

	What is the way to merge the outputs of a run spawned with the -k flag ?

	I see lots of “!” or “:” instead of “.” at execution. What does that mean?

	Where my last run data has been output ?

	My build produces unexpected results. Some files should have been remade and they have not. How do I fix this ?

	My code does not run much faster on the GPU than on the CPU. Why is this ?

	What is this @ sign at the beginning of the outputs’ path ?

	I see that there are .par files in each setup directory, and the same .par files are found in the in/ sub directory. What is this for ?

	I have noticed a directory named .fargo3drc in my home directory. What is it here for ?

	How can I see the output of python scripts (in particular the CUDA files) ?

	Tweaking the CUDA executable for memory optimization

	Speeding up reduction operations on platform >= 3.5

	A very incomplete TODO list

Introduction

FARGO3D is a hydrodynamics and magnetohydrodynamics parallel code. It is the successor of the public FARGO code (http://fargo.in2p3.fr). It conserves the main features of FARGO, but includes a lot of new concepts. Although FARGO3D was started inspired on FARGO, it was developed from scratch, allowing a much more versatile code.

Here is a summary of the main features of FARGO3D:

	Eulerian mesh code.

	Multidimensional (1D, 2D & 3D).

	Several geometries (Cartesian, cylindrical and spherical).

	Non-inertial reference frames (including shearing box for Cartesian setups).

	Adiabatic or Isothermal Equation of State (EOS). It is easy to implement another EOS.

	Designed mainly for disks, but works well for general problems.

	Solves the equations of hydrodynamics (continuity, Navier-Stokes, and energy) and magnetohydrodynamics (MHD).

	Includes ideal MHD (Method Of Characteristics & Constrained Transport).

	Includes magnetic field diffusion (resistivity module).

	Includes the full viscous stress tensor in the three geometries.

	Simple N-body integrator, for embedded planets.

	FARGO algorithm implemented in Cartesian, cylindrical and spherical coordinates.

	The FARGO or “orbital advection” scheme is also implemented for MHD.

	Possible run-time visualization.

	Multi-platform:

	Sequential Mode, one process on a CPU.

	Parallel Mode, for clusters of CPU (distributed memory, with MPI).

	One GPU (CUDA without MPI).

	Parallel GPU Mode, for clusters of GPUs (mixed MPI-CUDA version).

Another important feature of FARGO3D is to provide a coherent and simple framework to develop new routines.
We have developed a coding style which allows one to develop exclusively in C, as in the previous FARGO code, so that the user does not have to learn CUDA (a kind of “GPU programming language”). Automatic conversion of the C code to CUDA code is performed at build time by a Python script. Memory transactions between CPU and GPU are dealt with automatically in the most efficient manner so that the user never has to worry about these details.
For this reason, the built process of FARGO3D is supported by a lot of scripting that does all the hard work. There are scripts for developing new GPU functions (kernels), new boundary conditions and for adding new parameters within the code.

Two important warnings:

	FARGO3D is based on a finite difference scheme. It does enforce mass and momentum conservation to machine accuracy but does not enforce the conservation of total energy.

	FARGO3D always assumes the x-direction as periodic. In cylindrical and spherical coordinates, x corresponds to the azimuthal angle. We might in the future develop a more general solution.

If you publish results obtained with the code, a citation to the main paper of the code would be appreciated. The bibtex entry for this paper is:

@article{0067-0049-223-1-11,
author={Pablo Benítez-Llambay and Frédéric S. Masset},
title={FARGO3D: A New GPU-oriented MHD Code},
journal={The Astrophysical Journal Supplement Series},
volume={223},
number={1},
pages={11},
url={http://stacks.iop.org/0067-0049/223/i=1/a=11},
year={2016}
}

Here is a link [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2016ApJS..223...11B&data_type=BIBTEX&db_key=AST&nocookieset=1] to the ADS version of the bibtex record with non-accented characters.

A foreword about the terminology used in this manual

We are aware that most FARGO3D potential users come from a FORTRAN background, and for this reason, we have avoided as much as possible an uncontrolled use of C and CUDA’s jargon. We have tried to explicit specific terms every time we used them. We give hereafter a very short list of the main terms that you may encounter in this manual.

	What is called a routine in FORTRAN is a function in C. We have nonetheless used frequently the (incorrect) term routine, even for C functions. A function is always referred to with trailing empty parentheses (for instance, the main() function.)

	What is called a function in C is called a kernel in CUDA. This is not to be confused with the operating system’s kernel, of course. A kernel is, therefore, a “function” (generally lightweight, owing to memory constraints on board the streaming multiprocessors of a GPU) that spawns a huge amount of threads on the GPU cores.

	In the GPU’s jargon, the CPU and its RAM are usually designed as the host, whereas the GPU is called the device. Uploading data to the GPU is therefore called a “host to device” communication. The video RAM of a GPU is called the “global memory” of the device.

Finally, in the MPI parlance, each instance of a job should be called a processing element, PE in short. It should be distinguished from the processor, as several PEs can run on one processor or even on one core. Nonetheless, it is customary to distribute the tasks on clusters so that one PE runs on one core. We frequently commit the abuse of language that consists in saying “processor” instead of PE (e.g.: processor of rank 0).

License

FARGO3D is released under the terms of the GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://www.fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Full text [http://fargo.in2p3.fr/fargo3d_license.txt] of the GPL

First Steps

Getting FARGO3D

FARGO3D can be downloaded from the same webpage as the public FARGO
code (http://fargo.in2p3.fr). In that page, you will find a tar.gz
file, with all the sources inside. You can check the README file which
contains some basic installation tips. Hereafter is a set of detailed
instructions. If you have trouble at some stage, read the
troubleshooting first, and if your problem is not solved you may send
an email to the discussion group, asking for help.

Installing

Warning

This document was written for UNIX-type systems. We have
not tested the behavior of FARGO3D on a Windows system.

Suppose you have downloaded the code to your download directory
(USER_PATH/downloads), where USER_PATH is the path to your user (eg:
/home/pablo/downloads/). You need to decide where you want to install
FARGO3D. We assume in the following that you install it in the
directory USER_PATH/fargo3d. In order to do that, the steps are:

$: cd USER_PATH (or simply: 'cd')
$: cp USER_PATH/downloads/fargo3d.tar.gz USER_PATH/
$: tar -xvf fargo3d.tar.gz

If all went fine, you will see directories called bin, src, outputs,
setups, etc:

:USER_PATH/fargo3d/$ ls
bin doc Makefile outputs planets README scripts setups src std test_suite utils

You are now ready to build the code and do your first run.

First run

The first run of FARGO3D is the same first run as the one of its
ancestor FARGO (you can see the documentation of FARGO for
details). In order to build the code, go to the USER_PATH/fargo3d
directory (not the src/ directory !) and issue:

$: make

Warning

You must use the GNU make utility. The build process
relies upon several important features of the GNU make. We have
tested the compilation process with GNU Make 3.81. We have
thoroughly tested the build process with python version 2.7. It may
work with older versions of Python too. However, should you
experience unexpected results during the build process with an
older version of python, we recommend that you update it to 2.7.x
<= python version < 3. Issue python -V at the command line to
know your version. No additional libraries are required for this
simple first build.

With this instruction, you will have a sequential (or serial) version
of the binary (ie, without MPI), meant to run on one CPU core only. By
default, this sequential version cannot run on a GPU. After the
building process, you will see a message similar to:

 FARGO3D SUMMARY:
 ===============

This built is SEQUENTIAL. Use "make para" to change that

SETUP: 'fargo'
(Use "make SETUP=[valid_setup_string]" to change set up)
(Use "make list" to see the list of setups implemented)
(Use "make info" to see the current sticky build options)

We will go through the details of this note in the next sections, but
for now, the important thing is that the code was compiled in
SEQUENTIAL mode, and the SETUP is ‘fargo’. This means that the
code was compiled in a mode that is very similar to the FARGO
code. Actually, the first run of FARGO3D is the same first run of
FARGO (A Jupiter like planet embedded in a 2D cylindrical gas disk).

Warning

A note to former FARGO users: the setup must not be
confused with the parameter file. The setup is chosen at build
time, and contains fundamental information about the executable
produced (MHD on or off, mesh geometry, equation of state used,
number of dimensions, etc.) An executable build for a given setup
can then be run on as many parameter files as required, without any
rebuild.

If you have a look at the content of the main directory, you will see
that after the compilation a new file has been created, called
‘fargo3d’. This file is the binary file. We can now perform the first
run:

$: ./fargo3d -m setups/fargo/fargo.par

And you will see the following lines:

x = 1.0000000000 y = 0.0000000000 z = 0.0000000000
vx = -0.0000000000 vy = 1.0004998751 vz = 0.0000000000
Non-accreting.
Doesn't feel the disk potential
Doesn't feel the other planets potential

Found 0 communicators
OUTPUTS 0 at date t = 0.000000 OK
TotalMass = 0.0121800000
.............
................
.................
...................
...................
.....................
..................
...................

All right, all works fine. These lines should look familiar to former
FARGO users All the outputs are written to outputs/fargo. You can
now open it with your favorite data reduction software. We include in
the following some examples of how to visualize this first data. We
will assume that you run the test at least until the output 10.

Note: For all the instructions, it is assumed you are in
outputs/fargo directory. You may go to this directory by issuing
cd outputs/fargo from the USER_PATH.

Gnuplot

Gnuplot (http://www.gnuplot.info/) is a portable command-line driven
graphing utility, and it is a useful tool for showing the outputs of
FARGO3D. Here you have an example on how to load the outputs of
FARGO3D on our two-dimensional first run.

The command line should be similar to:

$: gnuplot
Version 4.6 patchlevel 1 last modified 2012-09-26
.
.
.
gnuplot> set palette rgbformulae 34,35,36
gnuplot> set logscale cb
gnuplot> nx = 384; ny = 128
gnuplot> plot[0:nx-1][0:ny-1] "./gasdens10.dat" binary array=(nx,ny) format="%lf"
 with image notitle

and you should see an image similar to:

[image: _images/gnuplot.png]
Gnuplot image of the first run (gas surface density), output number 10.

GDL/IDL

GDL (GNU Data Language - http://gnudatalanguage.sourceforge.net/) is
an open-source package similar to IDL, but it is free and has similar
functions. The command line should be similar to:

$: gdl
 GDL - GNU Data Language, Version 0.9.2
.
.
.
GDL> openr, 10, 'gasdens10.dat'
GDL> nx = 384
GDL> ny = 128
GDL> rho = dblarr(nx,ny)
GDL> readu, 10, rho
GDL> rho = rebin(rho, 2*nx, 2*ny)
GDL> size = size(rho)
GDL> window, xsize=size[1], ysize=size[2]
GDL> tvscl, alog10(rho)

and you should see an image similar to:

[image: _images/idl.png]
GDL image of the first run (gas surface density), output number 10.

Python

Python (http://www.python.org/) is one of the most promising tool for
data analysis in the scientific community. The main advantages of
Python are the simplicity of the language and the number of external
libraries. Data reduction of FARGO3D data is straightforward with the
numpy package (http://www.numpy.org/). Also, making plots is extremely
easy with the help of the matplotlib package
(http://matplotlib.org/). We recommend using the interactive
python-shell called IPython (http://ipython.org/).

Here, you have an example of how to visualize data in an interactive
IPython shell:

$: ipython --pylab
 IPython 1.0.0 -- An enhanced Interactive Python.
.
.
.
In [1]: rho = fromfile("gasdens10.dat").reshape(128,384)
In [2]: imshow(log10(rho),origin='lower',cmap=cm.Oranges_r,aspect='auto')
In [3]: colorbar()

You should see an image similar to (inside a widget):

[image: _images/python.png]
Matplotlib image of the first run, output number 10.

More tools

The is a lot of software for reading and plotting data but, in
general, you need an ASCII file with the data. In the utils directory,
you will find some examples of how to transform the data into a
human-readable format, written in different languages. If you are
working with a large data set, this option is not recommended. It is
always a good choice to work with binary files, your outputs are
lighter and the reading process is much faster.

Warning

Using ASCII format is very slow and should never be used for high
resolution simulations or a 3D run.

Note that FARGO3D can also produce data in the VTK format, which can
be inspected with software such as VISIT. This feature of FARGO3D will
be entertained later in this manual.

First parallel run

Until now, we did not need external libraries to compile the code, but
if we want to build a parallel version of the code, we must have a
flavor of MPI libraries on our system.

Note

FARGO3D was successfully tested with:

	OpenMPI 1.6/1.7

	MPICH2/3

	MVAPICH2 2.0

with a similar overall performance for the CPU version of the
code.

As we do not use any version-dependent features of MPI, we expect the
code to work with any version of MPI. There are however some special
features of MVAPICH 2.0 and OpenMPI 1.7 related to CUDA
interoperability that are discussed later in this manual, and that are
useful exclusively for GPU builds.

If you are running on a standard Linux installation, with a standard
working MPI distribution, you have to issue:

$: make PARALLEL=1

or the corresponding shortcut:

$: make para

At the end of the process, you will see a message, telling you that
the compilation was performed in parallel. Now, you can run the code
in parallel:

$: mpirun -np 4 ./fargo3d -m setups/fargo/fargo.par

If your computer have at least four physical cores, you should see a
speed-up of a factor ~4.

Note

Open-MPI-Installation on Ubuntu systems.
If you have Ubuntu, these lines install a functional version of OpenMPI:

$: sudo apt-get install openmpi-bin
$: sudo apt-get install openmpi-common
$: sudo apt-get install libopenmpi-dev

You must accept all the installation requirements. This process is
similar on other Linux-systems with a package manager. Similar
packages exist for MPICH.

Warning

The -m flag that we have used so far in the command line
instructs FARGO3D to merge all data from all processes when writing
them to the disk. which makes much easier its subsequent
reduction. In general, it is a good idea to always use this flag.

First GPU run

Warning

We assume you have installed CUDA and the proper driver on your
system. You can test if the driver works correctly by running
nvidia-smi in a terminal. It is also a good idea to run a few
examples of the NVIDIA suite to ensure that your installation is
fully functional.

Running FARGO3D in GPU mode is similar to the first parallel run. The
only important thing is to know where CUDA is installed. FARGO3D knows
about CUDA by the environment variable CUDA defined in your
system. If you do not have the CUDA variable defined, FARGO3D
assumes that the default path where CUDA is installed is
/usr/local/cuda. If this is not the right place, modify your
.bashrc file and add the following line:

``export CUDA=Your CUDA directory``

Warning

The above example assumes that you use the bash shell.

After that, we are ready to compile the code:

$: make PARALLEL=0 GPU=1

or the corresponding shortcut:

$: make PARALLEL=0 gpu

Warning

you cannot combine shortcuts in the command line. You
could for instance issue make seq GPU=1 instead of
the instruction above (seq stands for
PARALLEL=0), but make seq gpu would fail.

Note

Additional information

We assume here that you followed the whole sequence of
examples of this page, so that your previous run was a
parallel CPU run. Build options (such as PARALLEL=1) are
sticky, so that they are remembered from build to build
until their value is explicitly changed. Since we want here
a sequential built for one GPU, we need to explicitly
reset the value of PARALLEL to zero.

Another option is to issue:

make mrproper

which resets all sticky built options to their default
values, and after that issue:

make gpu

You will see at the end of the building process the message:

 FARGO3D SUMMARY:
 ===============

This built is SEQUENTIAL. Use "make para" to change that

This built can be launched on
a CPU with a GPU card (1 GPU only).

SETUP: 'fargo'
(Use "make SETUP=[valid_setup_string]" to change set up)
(Use "make list" to see the list of setups implemented)
(Use "make info" to see the current sticky build options)

telling you that the build is sequential and should be run on a
GPU. To run it, simply type:

$: ./fargo3d -m setups/fargo/fargo.par

Before the initialization of the arrays, you will see a block similar to:

=========================
PROCESS NUMBER 0
RUNNING ON DEVICE Nº 0
GEFORCE GT 520
COMPUTE CAPABILITY: 2.1
VIDEO RAM MEMORY: 1 GB
=========================

It is the information about the graphics card used by FARGO3D. If you
see some strange indications in these lines (weird symbols, an
unreasonable amount of memory, etc), it is likely that something went
wrong. The most common error is a bad device auto-selection.

Warning

In the jargon of GPU computing, the device is the name for a
given GPU. We shall use indistinctly these two terms throughout
this manual.

If you need to know the index of your device, you can use the nvidia-smi monitoring software:

$: nvidia-smi

You may then explicitly specify this device on the command line (here
e.g. 0):

$./fargo3d -m -D 0 setups/fargo/fargo.par

In general, expensive cards support detailed monitoring, but at least,
the memory consumption will be given even for the cheapest ones. Also,
you can check the temperature of your device. An increasing temperature
is a good indication that FARGO3D is running on the desired device.

Note

Useful comments

Note 1:

If you cannot run on a GPU after reading the above instructions,
you should try to check the index of your device (normally it is 0
is you have only one graphics card) with nvidia-smi:

 $: nvidia-smi

 +--+
 | NVIDIA-SMI 4.310.44 Driver Version: 310.44 |
 |-------------------------------+----------------------+----------------------+
 | GPU Name | Bus-Id Disp. | Volatile Uncorr. ECC |
 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
 |===============================+======================+======================|
 | 0 GeForce GT 520 | 0000:01:00.0 N/A | N/A |
 | 40% 37C N/A N/A / N/A | 18% 182MB / 1023MB | N/A Default |
 +-------------------------------+----------------------+----------------------+

 +---+
 | Compute processes: GPU Memory |
 | GPU PID Process name Usage |
 |===|
 | 0 Not Supported |
 +---+

And the number of the GPU, in this case, is 0. So, you could try to run FARGO3D forcing the execution on the device 0::

 $: ./fargo3d -mD 0 setups/fargo/fargo.par

Note 2:

We have used two sticky flags: PARALLEL and GPU, and after
a while you may wish to know which ones are activated. In order to
know the current status of the executable, issue:

$: make info

Current sticky build options:

PROFILING=0
RESCALE=0
SETUP=fargo
PARALLEL=0
FARGO_DISPLAY=NONE
FULLDEBUG=0
UNITS=0
GPU=1
DEBUG=0
MPICUDA=0
BIGMEM=0

You will see the meaning of each flag later on in this manual.

All the information about how to open and visualize your fields is
still valid. While the computation was done on the GPU,
all necessary data transfers were run in a transparent manner from the
GPU to the CPU before a write to the disk. For you, nothing changes,
except the execution speed.

First Parallel GPU run

The same ideas as before can be used for running FARGO3D on multiple
GPUs. But we cannot give a set of instructions because they are
cluster-dependent. In the next sections, you will learn how to run
FARGO3D on a large cluster and have each process select adequately its
device, according to your configuration. When you know how to work
with the internal SelectDevice() function, you will be able to work with
FARGO3D on a cluster of GPUs.

You could try to run with MPI over one GPU. Of course, it is a bad idea
for performance reasons, but it shows if all the parallel machinery
inside FARGO3D works. (Actually, for developing an MPI-CUDA code, you
do not need more than one thread and one GPU card!).

Try the following:

$: make mrproper
$: make PARALLEL=1 gpu
$: mpirun -np 2 ./fargo3d -m setups/fargo/fargo.par

If all goes fine, that is to say, if the output looks correct, FARGO3D
is working with MPI and GPUs. The next step is to configure it to run
on a cluster of GPUs, using as many different GPUs as possible. We
will learn how to do that later on in this manual

Directory tree

FARGO3D was developed as a general code. It solves a set of coupled
differential equations on a mesh. Because it was developed as a
general solver, it is necessary to keep certain general features
isolated from other, more specific ones (that correspond to a specific
problem).

A simple example of that is the initial condition (IC) of a
problem. Obviously, the IC is a problem-dependent feature, and a
mechanism is needed to keep it isolated from another problem. Touching
the main structure of the code only to change the IC is not a good
idea (yes, you can, but this is ugly, error-prone and wreaks havoc
with versioning systems). This kind of problem is solved using the
concept of SETUPS, and with the help of the VPATH Makefile
variable. If you know the RAMSES code
(http://www.ics.uzh.ch/~teyssier/ramses/RAMSES.html), you will see
that we use the same patch concept.

Warning

In practice, when using FARGO3D you do not need to know
about the VPATH variable, but if you want to develop some new
features, it is a good idea to keep in mind that it is used under
the hood.

Another problem is related to the different modules of the code. For
example, in some situations, we need to use the MHD module, but for
another set of problems, the MHD is irrelevant. In order to avoid a
lot of logical runtime tests inside the code (if’s), we prefer to
use MACROCOMMAND variables. These variables are interpreted prior to
compilation time, by the so-called preprocessor, and
activate/deactivate certain features (lines) of the code, allowing a
tailor-made executable, built for a specific problem. All these
variables are activated from the Makefile (they are defined actually
in the .opt files that we shall see below).

The most important file to ultimately build a FARGO3D executable is
obviously the Makefile. For this reason, there is a section devoted
to this particular file. But, because FARGO3D uses a lot of scripting
at compilation time, the process of building the code does not simply
reduce to the Makefile. We refer to the FARGO3D building process as
“the make process”.

A given instance of FARGO3D has many different properties, and storing
each one in an organized manner is achieved through a number of
different subdirectories. In this section, we give a brief
explanation of each one.

Directories

src/

The directory where the main sources are stored is the src/
directory. Inside it, you will find all the files related to the
initialization, evolution, and visualization of the data. All the
sources are pure C files, plus some headers and a very few CUDA
files. Also, in this folder, you can find the main makefile
(src/makefile). This makefile should never be called directly. All
the fundamental changes to the code must be done here.

scripts/

In the scripts/ directory you will find the fundamental
python-scripts used at compilation time. There are scripts for:

	Defining the variables.

	Analyzing the boundary conditions.

	Analyzing and defining the units.

	Generating the CUDA files automatically.

	Improving the CUDA blocks.

	Accelerating the make process (executing the makefile in parallel).

	Making general tests (mandatory for new improvements).

bin/

This directory is empty by default, but during compilation, this is
where all the object files and script-residual data are stored. In
practice, this directory is useful for avoiding a mixing between
sources and objects, a very useful behavior when you are developing
new routines.

outputs/

The outputs/ directory is the default output directory for all the
FARGO3D standard setups. As you could see in the first run, the data
were stored in outputs/fargo. By default all the data is stored in
outputs/setup_name, where setup_name is one of the setups in the
setups/ directory.

setups/

This directory is where all the different setups are. By default, the
make process looks here if the setup is defined, eg:

$: make SETUP=otvortex

After that, the makefile will search inside setups/ whether there
is a directory called setups/otvortex. Inside the otvortex/
directory we find all the files necessary to set up the problem and
build the code.

planets/

Inside this directory are the default planetary system files to run a
simulation with one or several planets, considered as point-like
masses that interact between them and with the disk (onto which they
act as an external potential). The syntax of planetary files is for
the former FARGO code. It is not mandatory to store your planetary
data here, but it is recommended.

std/

the name std comes from “standard”. This directory stores all the
standard configuration files. In this version, these are:

	boundaries.txt: where the boundary conditions are defined.

	boundary_template.c: A build helper for the boundaries
scripting.

	centering.txt: A file describing the centering of the different
fields with respect to the mesh (helper for boundary conditions
scripting).

	defaultflags: A file with all the default flags for the make
process.

	std.par: Default parameters. It is used when you have not
defined the value of a certain parameter in your parameter file. It
is used for compatibility with some specific problems related to
disks simulations and some plot-related parameters.

	standard.units: The scaling rules for all standard real
variables of the code.

	func_arch.cfg: The standard architecture file. This file selects
where each function will run (CPU or GPU). It only makes sense if
the compilation was done with GPU-Compatibility (GPU=1). By default,
all the function run on the GPU, but this file is a great tool for
debugging the code (one of the best tools to develop a kernel!).

test_suite/

This directory was developed to ensure a stable development of the
code. Here there is a set of test files written in python. All of them
use the script test.py. They are easy to understand. The main idea is:
if your recent developments pass all the tests, at least, your new
improvements do not interfere with the main code and do not alter its
behavior.

utils/

Here is a set of routines to analyze the data. The content inside are
self-documented. Feel free to explore it.

doc/

The doc/ directory is where these documentation files
reside. Also, here are some files related to the license of the
code.

setups/SETUP directory

The directory setups/SETUP is one of the most complex directories
in FARGO3D. The complexity arises because inside are stored all the
information required for a given, specific problem. The extensive list
of the files stored for each setup is:

	condinit.c: this is the file where the initial conditions are
written. Thanks to the use of the VPATH variable in the
makefile, this file supersedes the file src/condinit.c of the
main source.

	SETUP.par: the parameters required for this setup.

	SETUP.opt: all the directives for the makefile (this is where you
decide the number of dimensions, the equation of state, the
geometry, whether you use orbital advection -aka FARGO algorithm-,
MHD, etc.)

	SETUP.bound: set the boundary conditions used in the setup (taken
from boundaries.txt).

	SETUP.mandatories: A list of parameters that must be always explicit
in your .par files.

	SETUP.units: The scale rules for the parameters not explicit in
std/standard_units.

	SETUP.objects: Additional objects you want to include. (Your own
developments).

Warning

Any file here has priority over the file with the same name in the
src/ directory. So, in theory, inside a SETUP directory, you
could have a complete copy of the src/ directory, and the make
process will be done with this sources, but in practice, only a few
files are needed, for example, depending on your needs:
resistivity.c, potential.c, etc.

Make Process

Building the code is achieved simply by invoking the Makefile in the
main directory. The Makefile contains the set of instructions that
build the executable, normally called “fargo3d” according to a
specific setup and with proper instructions for generating a CPU, GPU,
sequential or parallel built. This Makefile is not standalone. A set
of scripts was developed in order to simplify the building
process. These scripts do all the hard work.
Most users will not need to know the different stages of a build, but
we give here the detail of what happens when you issue make
[options] in the main directory.

A schematic view of the make process is:

[image: _images/make.png]

We can see that the make process involves three main steps. When we
type make in the main directory, we spawn the first step, that is
we execute the Makefile. All the shortcut rules, cleaning rules, and
testing rules are defined within. The second step is spawned by the
Makefile itself, and amounts to running the scripts/make.py file,
that works as a link between the main Makefile and the
src/makefile file. The third and last step corresponds to
the execution of the src/makefile . All the scripts are managed
at this stage (automatic conversion of C to CUDA, analysis of boundary
conditions and scaling rules, etc.)

Makefile (Stage1)

As we have just seen the first file related with the make process is
“Makefile” in the main directory. Inside, there is a set of
instructions that manages the build variables (such as GPU, PARALLEL, etc.)
This makefile works as a
wrapper that further invokes scripts/param.py. There are two
ways to define a build variable from the command line: using
shortcut rules, or defining the value of the variables manually. The
set of variables allowed are:

	PROFILING: [0,1] The profiler flags and a set of timers will be
activated. Useful for benchmarks and development.

	RESCALE: [0,1] Activates a rescaling of the (real) parameters of the
parameter file to certain units. The numerical values used for this
rescaling depends on the value of the build variable UNITS. The
output are all done with the new units.

	SETUP: Selects the proper directory where your setup is. A list
will be shown if you type make list.

	MPICUDA: [0,1] Activates the peer2peer/uva MPI-Communications
between different devices. Only compatible with MVAPICH2 2.0 and
OpenMPI 1.7. (Strongly recommended)

	FARGO_DISPLAY: [NONE,MATPLOTLIB] Run time visualization of your
fields using python-numpy-matplotlib packages.

	DEBUG: [0,1] The code will be compiled in debug mode. The main
change is the flag “-g” at compilation time. No optimization is
performed in this mode.

	FULLDEBUG: [0,1] The code runs in full debug mode. Similar to
debug mode, but the merge flag (-m) is not allowed. All the
fields are dumped with their ghosts cells (buffers).

	UNITS: [0,MKS,CGS] How the units are interpreted by the
code. See the unit section for further details.

	GPU: [0,1] Activates a GPU compilation.

	PARALLEL: [0,1] Activates the use of the MPI Libraries.

	BIGMEM: [0,1] Activates the use of the global GPU memory to
store light (1D) arrays (which are otherwise stored in the so-called
constant memory on board the GPU). Normally, it is needed when
your simulation exceeds ~750 cells in some direction. This feature
is device-dependent. Typically, a 3D run with mesh size 500*500*500
does not require BIGMEM=1, but a 2D run with mesh size
50*1000 does. However, when BIGMEM=1 is not required, you
may activate it. Perform some benchmarking to check which choice
yields faster results. This is problem and platform dependent.

	jobs/JOBS: [N] where N is the number of processes that you want to
spawn for building the code. By default N=8. This option is much
needed when working with CUDA. The building process of CUDA object
files is by far the most expensive stage of building a GPU instance
of FARGO3D, as you will soon realize.

All these variables must be defined by: make VARIABLE=VALUE.

The shortcut rules are invoked with the command make option, where
option can be:

	cuda/nocuda, gpu/nogpu –> GPU=1/0

	bigmem/nobigmem –> BIGMEM=1/0

	seq/para –> PARALLEL=0/1

	debug/nodebug –> DEBUG=1/0

	fulldebug/nofulldebug –> FULLDEBUG=1/0

	prof/noprof –> PROFILING=1/0

	mpicuda/nompicuda –> MPICUDA=1/0

	view/noview –> FARGO_DISPLAY=MATPLOTLIB/NONE

	cgs/mks/scalefree –> UNITS=CGS/MKS/0

	rescale/norescale –> RESCALE=1/0

	testlist –> A list of the tests implemented.

	testname –> the test called name.py, found in test_suite,
will be executed.

	blocks –> special syntax: make blocks setup=SETUPNAME. Performs
a detailed study of the performance of your graphics card with
respect to the size of the CUDA blocks. This test will be done for
each GPU function. The result is stored in
setups/SETUPNAME/SETUPNAME.blocks (go to the section “Increasing the
GPU performance”). A build is performed with a default block size if
this file does not exist, so you do not have to worry about this
feature at this stage. However, remember that it may increase the
performance up to ~20 %.

	clean –> Cleans the bin/ directory. Recommended when you switch
to another SETUP.

	mrproper –> Removes all the data related to some specific make
configuration. All the code is restored to its default. The
outputs directory will not be touched.

scripts/make.py (Stage2)

The second step in the building process is to call make.py. This
file does not need a manual invocation, and is launched from the main
Makefile (stage1). In general, the compilation process is expensive
when you are working with CUDA files. For this reason, a parallel make
process is highly desirable. Normally, a general Makefile can handle
parallel compilation, but in the FARGO3D case (that uses a lot of
scripting) some race conditions could appear in parallel
Makefiles. Since the GNU make utility does not have a proper way to
avoid such problem, we developed an interface between Makefile and
src/makefile to do all the building process in the right order: first
invoking the scripts to build all the headers and variable
declarations and then a parallel execution of src/makefile. Also,
make.py keeps track of the last flags used in the last built
(sticky options). All this information is stored in the hidden file
std/.lastflags.

src/makefile (Stage3)

The third and last step in the building process is to call
src/makefile, which is done by scripts/make.py. The role of
this makefile is to build the executable, normally called fargo3d
in the main directory. All the calls to scripts are done here. Inside
there are a set of rules for making the executable in the correct
sequence. You may have a look through these different rules,
which are self-documented by their
names.

There is a set of system-configuration blocks, that allows building
FARGO3D on different platforms with the same makefile. This
configuration blocks are selected by using the environment variable
called FARGO_ARCH (the same as for the FARGO code). Also, inside this
makefile are defined a lot of useful variables. Here is where the
structure of the code is defined, and where the variable VPATH is
specified. This variable is extremely powerful, and if you want to
extend the FARGO3D directory structure, you should learn about the use
of this variable (GNU Make Reference Guide).

Another important set of variables are:

	MAINOBJ: The name of all the CPU objects that will be linked with
the final executable. All new source file in the code must be
included in this variable (with the .o extension, instead of .c)

	GPU_OBJ: The name of the static kernels used in the code. In
practice, you will never need to touch it. By static we mean
that these few kernels are not generated automatically from the C
code by a Python script.

	GPU_OBJBLOCKS: The name of the objects that will be generated by the
script c2cuda.py. Note all of them must have the suffix _gpu.o, with a
prefix that is the one of the corresponding C file. This is very
important, because the rule that generates CUDA-files from
C-files uses the suffix of the object name. In the tutorial on how to
develop a GPU-Routine (function) this will be presented in more detail.
All the functions that must be generated automatically from C code
at build time must appear as a list in this variable.

FARGO_ARCH environment variable

FARGO3D is a multi-platform code, and can run on a modern cluster of
GPUs but also on your personal computer, even without a GPU. For
the ease of use, we adopt a computer-dependent
makefile scheme, managed by the environment variable FARGO_ARCH.

You can see in src/makefile a group of lines similar to:

#LINUX PLATFORM (GENERIC)
#FARGO_ARCH must be set to LINUX
CC_LINUX = gcc
SEQOPT_LINUX = -O3 -ffast-math
PARAOPT_LINUX = ${SEQOPT_LINUX}
PARACC_LINUX = mpicc
LIBS_LINUX = -lm
INC_LINUX =
NVCC_LINUX = nvcc
PARAINC_LINUX =
PARALIB_LINUX =

These lines are telling the makefile where the libraries are and which
compilers will be used. In the LINUX case (default case), we are not
including any parallel library to PARALIB and any header to PARAINC
because we are assuming they are in your LD_LIBRARY_PATH, or they are
installed in the default places. In general, in your cluster, you
should have something similar to:

#FARGO_ARCH must be set to MYCLUSTER
CC_MYCLUSTER = /bin/gcc
SEQOPT_MYCLUSTER = -O3 -ffast-math
PARAOPT_MYCLUSTER = ${SEQOPT_LINUX}
PARACC_MYCLUSTER = /bin/mpicc
LIBS_MYCLUSTER = -lm
INC_MYCLUSTER =
NVCC_MYCLUSTER = ${CUDA}/bin/nvcc
PARAINC_MYCLUSTER = -I/${MPIDIR}/include
PARALIB_MYCLUSTER = -L/${MPIDIR}/lib64

Where MPIDIR and CUDA are variables pointing to the place where MPI and Cuda are installed.

To use the FARGO_ARCH variable, you have two options:

	define FARGO_ARCH before compiling the code.

	define FARGO_ARCH in your personal .bashrc or .tcshrc file
(depending on your shell).

If you do not have a standard Linux distribution, do not forget to
export the variable FARGO_ARCH in your ~/.bashrc file:

$: vi USER_DIR/.bashrc

and add the following line:

export FARGO_ARCH=MYCLUSTER

where MYCLUSTER is only an example name. You should modify it to
match the name that you defined in the src/makefile. This file is
provided as is with a few examples that you may adapt to your own needs.

Boundaries

Boundary conditions in FARGO3D can be selected only for the Y and Z
directions, since in X the mesh is always considered periodic. It is
because FARGO3D was mainly designed for azimuthal-periodic planetary
disks, with a cost-effective orbital advection (aka FARGO)
algorithm. Albeit that this limitation may seem strong in practice,
there are lots of situations where you can assume your 3D problem to
be periodic along a given direction. If you can not do that,
unfortunately there is no way to avoid this limitation with the
present version of the code.

The boundary conditions (BCs) are handled by the script
boundparser.py. We have developed a metalanguage to handle
them. Although this may seem quite a futile investment, it soon
appeared to be much needed as we were developing the code. We had
initially left the treatment of BCs on the CPU, even for GPU
builds. We thought that the filling of the ghost zones by the CPU
would have negligible impact on the overall speed of the code. This,
however, turned out to be untrue: the CPU-GPU communication overhead,
and the slowness of CPU calculations lowered the code performance
significantly. We therefore decided to deal with BCs in the exact same
way as with other time consuming routines, which can be translated
automatically to CUDA, so as to run on the GPU. This implied some
syntax constraints on the associated C code, which would have made the
development of a variety of boundary conditions on the four edges of
the mesh a time consuming and error prone process (yes, four, because
they are specified only for Y and Z). For this reason, we have chosen
to write a script that produces the C code for a given set of boundary
conditions, with all the syntactic comments needed to subsequently
translate it to CUDA.

How are boundary conditions applied?

The boundary conditions are applied just after the initialization of a
specific SETUP (before the first output), and subsequently, twice
per time step. Boundary conditions are applied to all primitive variables,
and to the electromotive forces (EMFs). All boundary conditions
are managed by the routine FillGhosts(), inside
src/algogas.c. Below, we depict schematically how cells of the
active mesh are mapped to the ghost zones.

[image: _images/boundaries.png]
Schematic view of how the boundaries are applied.
We note that the buffer (or ghost) zones are three cells wide.

The last (third) ghost cell is filled with the first active one, the
second ghost cell is filled with the second active one, and finally,
the first ghost cell is filled with the third active cell.

Note

Note that we do not consider the mesh periodicity along a given
direction as a proper boundary condition, in the sense that no ad
hoc prescription has to be used to fill the corresponding ghost
zones. Rather, a mesh periodic along a given dimension has no
boundary in this dimension, and this property is assigned to the
mesh in the parameter file (and not in the boundary files of the
setup that we present in detail below) by the use of the Boolean
parameters PeriodicY and PeriodicZ, which default to
NO. In the boundary files that we present hereafter, you will
therefore see BC labels such as SYMMETRIC, OUTFLOW, etc.,
but never PERIODIC.

Note

In the figure above we have three rows of ghost cells. The number
of rows depends on the problem, and on how frequently
communications are performed within a time step. There is a
trade-off between the number of rows (large buffers slow down the
calculations and the communications) and the number of
communications. The number of ghosts is defined in src/define.h
around line 40 et sq.

boundparser.py

In order to work with boundaries, we have developed a script called
boundparser.py, that reads a general boundary text file and converts
it into a C file, properly commented to be subsequently converted into
a CUDA file. boundparser.py works with four files, called:

	setup.bound

	boundaries.txt

	centering.txt

	boundary_template.c

(note: these last three files can be in your setup directory, or by
default, the script takes those of the std/ directory, as
prescribed by the VPATH variable.)

boundparser.py reads the information inside the setup.bound
file, and compares it with the information in boundaries.txt and
centering.txt. Finally, it builds a set of C files that apply the
boundary conditions (called [y/z][min/max]_boundary.c) with a proper
format, given by boundary_template.c. We will not give a detailed
description on how boundparser.py works, but it is not difficult
to understand the script if you are interested in its details.

The key to developing boundary conditions is to understand the
structure of setup.bound and boundaries.txt file. Both files are in
the same format, described below.

Boundaries files format

boundaries.txt, centering.txt and setup.bound files have
the same format. All are case-insensitive, and have two levels of
information: the main level and an inner level. Also, comment lines are
allowed. The general structure of the format is:

Some header
#--------

LEVEL1_a:
 Level2_a: Some_data1_a #A comment
 Level2_b: Some_data1_b
 Level2_c: Some_data1_c
 Level2_d: Some_data1_d

A comment line

LEVEL1_b:
 Level2_a: Some_data2_a
 Level2_b: Some_data2_b
 Level2_c: Some_data2_c
 Level2_d: Some_data2_d

etc...

centering.txt

Special care must to be taken to the centering of data. Not all data
are defined at the same location in FARGO3D. In order to write
automatically boundary conditions in a given direction (Y/Z), it is
necessary to know which fields are centered or staggered in this
direction. This information is taken by boundparser.py from
centering.txt. This file uses the same format described above,
and uses a particular set of instructions. The allowed values are:

	LEVEL1 –> The name of a Field Structure inside the code (eg:
Density, Vx, Bz, etc…).

	Level2 –> the word “Staggering”

	data –> C,x,y,z or a combination of xyz (eg: xy, yz, xyz)

C is short of “centered”, meaning that the field is a cube-centered
quantity. The meaning of x is staggered in x, that is to say the
corresponding quantity is defined at an interface in x between two
zones, rather than in the middle of two subsequent interfaces. By
default, the field value is assumed centered along each direction that
does not appear explicitly in the centering definition.

Let us have a look at some lines of centering.txt:

	Density:

	Staggering: C

	Bz:

	Staggering: z

	Emfz:

	Staggering: xy

The first two lines specify that the density is a cube centered
quantity. The following two lines specify that the magnetic field in
the z-direction is centered in x and y, but staggered in z (ie defined
at the center of an interface in z). Finally, the last two lines
indicate that the EMF in z is centered in z, but staggered in x
and y. It is, therefore, a quantity defined at half height of the
lower vertical edge in x and y of a cell.

All primitive variables and the EMF fields are defined by default in
std/centering.txt. If you create a new primitive field in the
code, you should specify its correct centering in
std/centering.txt if you want to create boundary conditions for
this field.

boundary_template.c

This file is taken as a template for building automatic boundary
condition C files . You should never have to deal with it. Also, it
contains all the information for subsequent building of the CUDA
files. If you need special boundary conditions, you could try
modifying this file first. As long as you do not alter the lines
beginning with “%”, you can modify this template. This kind of
modification should be made by an advanced user.

boundaries.txt

This file is the core file for the boundary condition. The main idea
is to provide a way to the user to define a boundary prescription in
as user-friendly a manner as possible. Let us begin with a simple
example. Assume that we want to define a boundary condition that we
call SYMMETRIC, which simply consists in copying the data of the
active cell into the ghost zone. We represent schematically what is
intended on this diagram:

| | |
| | |
 ^ ^
 | |
 ghost active
 zone zone

The active zone contains a value, that we call, arbitrarily, active

| | active |
| | |
 ^ ^
 | |
 ghost active
 zone zone

We want to set the value of the ghost zone to the same value, that is
we want:

| active | active |
| | |
 ^ ^
 | |
 ghost active
 zone zone

Therefore we represent this boundary condition with the following,
rather intuitive line of code:

| active | active |

Assuming for the moment that this boundary condition applies to
centered variables, we would finally write the following piece of code in
boundaries.txt to define our SYMMETRIC boundary condition:

SYMMETRIC:
 Centered: | active | active |

The right “cell” always represent the active cell, and the left “cell”
the corresponding ghost cell. The string active could be actually
any string:

SYMMETRIC:
 Centered: | value | value |

If we wish to have an anti-symmetric boundary condition (that is to say
that we set the ghost value to the negative of its active
counterpart):

| -active | active |

Should we want to set the ghost value to twice the active zone’s
value:

| 2.0*foo | foo |

Or if we wish to set it to some predefined value (say that you have
a supersonic flow of uniform, predefined density 0.12 g/cm^3 entering
the mesh, and you work in cgs):

| 0.12 | whatever |

in which case the value whatever is never used. Naturally, it is
much better to use a parameter (say, RHO0, that you define in your
parameter file):

| 'RHO0' | whatever |

We shall come back to the use of the quotes later on in this section.

This, in a nutshell, is how we define boundary conditions in the code.

Now, assume that we want to have an anti-symmetric boundary condition
on the velocity perpendicular to the boundary. The situation is a bit
different than the one described above, because this field is
staggered along the dimension perpendicular to the mesh. That is, we
have:

| ||| |
| ||| |
 ^ value
 |
 edge of
 active mesh

As shown on this diagram, the value is defined at the interface, and
not at the center as previously. The triple vertical line delineates
the edge of the active mesh. What we intend is the following:

 | ||| |
 | ||| |
-value ^ value
 |
 edge of
 active mesh

but this leaves yet unspecified the value at the edge of the active
mesh, which should be set here to zero (it has to be its own
negative):

 | ||| |
 | ||| |
-value 0 value

Eventually, we have to specify one extra value with respect to the
centered case. Our boundary condition is therefore coded as:

ANTISYMMETRIC:
 Staggered: | -value | 0 | value |

If the | (pipe) symbol could be thought of as representing the zones
interface for the centered case, it is no longer the case in the
staggered case. In any case, we will always have two “cells” in the
BC code for a centered quantity, and three “cells” in the BC code for
a staggered quantity, regardless of the number of rows in the
ghosts. The matching between an active cell and its corresponding
ghost zone is as shown on the figure at the beginning of this section.

We sum up this information: the file boundaries.txt contains a two
level description that obeys the general following rule:

	LEVEL1 –> the name of the boundary. It is an arbitrary name,
defined by you.

	Level2 –> the word “Centered” or “Staggered”, followed by some
data.

	data –> |some_text_1|some_text_2| or
|some_text_1|some_text2|some_text3|

The rules in the ghost zone are as follows:

	Any string used in the active zone that matches some part of the
ghost zone string will be replaced by the active cell value.

	Any string inside ‘’ will be textually parsed and converted to
upper-case. They are useful to match the parameters of the
parameter files, which are upper-case C variables.

	Any string that does not match rule 1 nor rule 2, will be textually
parsed and converted to lower case.

Additionally, there is a set of indices helpers, for working with boundaries:

*jgh/kgh: The index of the y/z ghost cells.
*jact/kact: The index of the y/z active cells.

These helpers prove very useful to perform complex extrapolations at
the boundaries. You can see examples in the file
std/boundaries.txt.

Examples:

Zero-gradient boundary:

Suppose we want to define a zero gradient boundary. That means we want
to copy all the active zone in the ghost zone for both centered and
staggered meshes.

The syntax is as follows. It groups together the definitions that we
have worked out above, for centered and staggered fields:

SYMMETRIC:
 Centered: |active|active|
 Staggered: |active|active|active|

where the right active value will be copied without any modification
to the ghost zone. Note that this boundary definition is direction and
side independent, ie it can apply to ymin, ymax, zmin and
zmax.

Keplerian extrapolation example

We define here a more complex boundary condition:

KEPLERIAN2DDENS:
 Centered: |surfdens*pow(Ymed(jact)/Ymed(jgh),'SIGMASLOPE')|surfdens|

This line is equivalent to:

KEPLERIAN2DDENS:
 Centered: |active*pow(ymed(jact)/ymed(jgh),'sigmaslope')|active|

as per the rules listed above.

What kind of action does this instruction correspond to ?
It sets the value of the ghost zone to:

\(\mbox{ghost value}=\Sigma_\textrm{active}\left(\frac{R_\textrm{act}}{R_\textrm{ghost}}\right)^\alpha\)

since Ymed stands for the radius of the center of zone, in a
cylindrical setup.

The reader familiar with protoplanetary disk’s jargon and notation
will easily recognize the radial extrapolation of the surface density
of the disk in the ghost zone, with a power law of exponent
\(-\alpha\) (\(\alpha\) is dubbed SIGMASLOPE in the
parameters of FARGO3D), hence the string chosen to represent the value
of the active cell (surfdens), although at this stage nothing
specifies yet to which variable this boundary condition should be
applied. This is the role of the file SETUP .bound.

SETUP.bound

This file must be located in the sub-directory of a given setup, and
must have same prefix as the setup to which it refers. For instance, in
setup/fargo/, the file that specifies the boundaries is called
fargo.bound.

The files that we described in the previous paragraphs are used to
specify what transformation rule is used for an arbitrary field (in boundaries.txt)
depending on its centering, while the centering of all fields is
specified by std/centering.txt.

The SETUP .bound file now specifies the transformation rule to use
for each physical variable. It obeys the following general syntax:

	LEVEL1 –> The name of the field.

	Level2 –> The side of the boundary (ymin,ymax,zmin,zmax), and some data.

	data –> Boundary label (the label defined in boundaries.txt)

We show hereafter a few examples:

2D XY reflecting problem

We want to have a 2D isothermal fluid with periodic “boundary conditions” in X (as
required in FARGO3D) and reflecting boundary conditions in Y.

We have three primitive variables to which we must apply BCs. Those
will only apply in Y (not in X because of the periodicity, nor in Z
because we have a 2D X-Y setup).

The setup.bound file should therefore look similar to:

Density:
 Ymin: SYMMETRIC
 Ymax: SYMMETRIC

Vx:
 Ymin: SYMMETRIC
 Ymax: SYMMETRIC

Vy:
 Ymin: ANTISYMMETRIC
 Ymax: ANTISYMMETRIC

where Vy is ANTISYMMETRIC in Y because we have reflection in the
y-direction.

At build time, the script boundparser.py goes through this
file. The first three lines instruct it to generate C code to implement a
boundary condition for the density field in ymin and ymax. It goes
to the definition of SYMMETRIC found in std/boundaries.txt. Two
definitions are available: one for centered fields, the other one for
staggered fields. In std/centering.txt it finds that the density
is centered (in y) and therefore generates the C code corresponding to
the centered case. The same thing occurs for Vx: it finds that this
field is centered in Y. Finally, the last three lines instruct it to
generate C code for an ANTISYMMETRIC boundary condition of Vy
in Y. It finds in std/centering.txt that this field is staggered
in Y, and generates the C code corresponding to the definition:

| -value | 0 | value |

The C functions thus produced contain all the comments required to
further conversion to CUDA, should the user request a GPU built.

2D YZ reflecting problem

Now, a more complex example, with all directions (yet in 2D):

Density:
 Ymin: SYMMETRIC
 Ymax: SYMMETRIC
 Zmin: SYMMETRIC
 Zmax: SYMMETRIC

Vx:
 Ymin: SYMMETRIC
 Ymax: SYMMETRIC
 Zmin: SYMMETRIC
 Zmax: SYMMETRIC

Vy:
 Ymin: ANTISYMMETRIC
 Ymax: ANTISYMMETRIC
 Zmin: SYMMETRIC
 Zmax: SYMMETRIC

Vz:
 Ymin: SYMMETRIC
 Ymax: SYMMETRIC
 Zmin: ANTISYMMETRIC
 Zmax: ANTISYMMETRIC

Note

Note how the staggering is implicit in Vy/Vz boundaries.

An extensive list of examples can be found in the setups/ directory.

Common errors

This section will be developed later from users’ feedback.

The boundparser.py script is at the present time a bit taciturn,
and may silently ignore errors which might be a bit difficult to spot
afterward. Among them:

	Incorrect names or misprints.

	An incorrect centering.

Defining boundaries by hand

Sometimes more flexibility is needed when creating boundaries. You can
always define the boundaries by hand by disabling the parser that
creates the boundaries.

In order to create the boundary sources manually, you can proceed as follows:

	Create the ymin_bound.c, ymax_bound.c, etc… files manually:

> cd scripts
> python boundparser.py ../std/centering.txt ../std/boundaries.txt ../setups/yoursetup/yoursetup.bound

The previous instruction produces the boundary files (in scripts/) called ymin_bound.c, ymax_bound.c, etc…, needed to build the executable.

	Copy the newly created boundary source files into your setup directory.

	Comment the following lines in the makefile:

%_bound.o: ymin_bound.c ${GLOBAL}
 @${COMPILER} $*_bound.c -c ${INCLUDE} ${OPTIONS} ${FARGO_OPT}

ymin_bound.c: ${BOUNDARIES} ${GLOBAL}
 @echo PARSING BOUNDARIES...
 @-python ${SCRIPTSDIR}/boundparser.py $^

ymax_bound.c zmin_bound.c zmax_bound.c: ymin_bound.c

	Modify the boundary source files manually.

	build the executable (make) and check if the boundaries were indeed compiled from your setup directory, e.g:

...
CC ../setups/fargo/ymin_bound.c ==> ymin_bound.o
CC ../setups/fargo/ymax_bound.c ==> ymax_bound.o
CC ../setups/fargo/zmin_bound.c ==> zmin_bound.o
CC ../setups/fargo/zmax_bound.c ==> zmax_bound.o
...

Mesh and Fields

Mesh

The mesh consists of NX cells in X (hence azimuth in cylindrical and
spherical geometries), NY+2*NGHY cells in Y (radius in cylindrical and
spherical geometries) and NZ+2*NGHZ cells in Z (colatitude in
spherical geometry). Here NGHY and NGHZ stand for the number of ghost
or buffer zones next to the active mesh. If a direction is not
included in the setup (for instance Z in the 2D polar fargo
setup), the corresponding value of NGHY/Z is set to 0.

The variables NX, NY, and NZ are defined in the parameter file (they
default to 1, so there is no need to define, for instance, NZ in a 2D
setup such as fargo, or NX in the 2D setup otvortex, which
corresponds to the Orszag-Tang vortex problem in Y and Z).

In practice, this mesh is split among processors, and locally (within
the scope of a given process) the submesh considered has size Nx,
Ny+2*NGHY and Nz+2*NGHZ.

The information about cells coordinates is stored in 1D arrays

	[xyz]min(index)

	[xyz]med(index)

where min refers to the inner edge of a zone (in x, y or z) whereas
med refers to the center of a zone (in x, y or z). This notation
should look familiar to former FARGO users.

Warning

[xyz][min/max](index) are not vectors, they are macrocommands. They
must be invoked with (), not with [].

NGHY and NGHZ are preprocessor variables, defined in the file src/define.h.

Because we have a multi-geometry code, another set of secondary
geometrical variables is defined (surfaces, volumes).
See the end of this section for details.

Fields

Fields are structures, and they can be seen as cubes of cells, of size
equal to the mesh size. The location at which a given variable is defined is [xyz]med if
the field is [xyz]-centered, or [xyz]min if the field is
[xyz]-staggered. You can find a comprehensive list of the fields in
src/global.h. The place where the fields are created is in
CreateFields(), inside src/LowTasks.c.

Internally, all fields are cubes written as 1D-arrays. So we need
indices to work with the 3D-data. We have a set of helpers defined in
src/define.h. They are:

	l : The index of the current zone.

	lxp, lxm: lxplus/lxminnus, the right/left x-neighbor

	lyp, lym: lyplus/lyminnus, the right/left y-neighbor

	lzp, lzm: lzplus/lzminnus, the right/left z-neighbor

These helpers must be used with the proper loop indices:

int i,j,k;

for (k=z_lower_bound; k<z_upper_bound; k++) {
 for (j=y_lower_bound; j<y_upper_bound; j++) {
 for (i=x_lower_bound; i<x_upper_bound; i++) {
 field[l] = 3.0;
 field2[l] = (field1[lxp]-field1[l])/(xmed(ixp)-xmed(i)); //obviously some gradient calculation...
 }
 }
}

where [kji] always means [zyx]-direction.

Warning

Do not change the order of the indices! The definition of l,
lxp, lxm, etc. assumes the following correspondence:

i->x, j->y, k->z

These helpers are extremely useful. No explicit algebra has to be
performed on the indices within a loop (but never use or define a
variable called l or lxp !…). Besides, the definition of
l is also correct within GPU kernels (for which the indices
algebra is slightly different owing to memory alignment
considerations), and this is totally transparent to the user who
should never have to worry about this.

In practice, a loop is similar to (isothermal equation of state):

int i,j,k;

for (k=0; k<Nz+2*NGHZ; k++) {
 for (j=0; j<Ny+2*NGHY; j++) {
 for (i=0; i<Nx; i++) {
 pres[l] = dens[l]*cs[l]*cs[l];
 }
 }
}

Note

Note that the lines of code above do not evaluate, nor define
l, which is used straight out of the box, since it is a
preprocessor macrocommand.

Working with fields

A field structure is defined as follows (in src/structs.h):

struct field {
 char *name;
 real *field_cpu;
 real *field_gpu;
};

where we have stripped the definition of all extra lines not relevant
at this stage. The name is a string that is used to determine the
name of output files. field_cpu is a pointer to a double or float
1D array which has been duly allocated on the RAM prior to any
invocation.

Similarly field_gpu is a pointer to a double or float 1D array
which has been duly allocated on the Video RAM prior to any
invocation. The user should never have to invoke directly this
field. Rather, C files will always make use of the field_cpu,
which will be automatically translated to field_gpu as needed
during the C to CUDA conversion.

Acceding a field value is generally done as follows:

struct Field *Density; // Definition at the beginning of a function
real *density; // real is either double or float.
density = Density->field_cpu;
...
later on in a loop:
...
 density[l] =;

Note

Note that we define an “array of reals” straight away and
subsequently only refer to it to manipulate cell values. In order to
avoid confusion, it is a good idea to have an upper case for the
initial of Fields*, and lower case for the corresponding real arrays.

Fields on the GPU

Similar techniques are used on the GPU, but we have made it totally
transparent to the user, so unless you want to program your CUDA kernels
directly, you should never to worry about this.

Useful variables

For the handling of the mesh, a set of useful variables and
macrocommands has been defined. An extensive list with a description is
given below:

Indices:

	l: The index of the current cell. It is a function of (i,``j``,``k``, pitch & stride).

	lxp: The index of the “right” neighbor in x of the current
cell. It is a function of l.

	lxm: The index of the “left” neighbor in x of the current
cell. It is a function of l.

	lyp: The index of the “right” neighbor in y of the current
cell. It is a function of l.

	lym: The index of the “left” neighbor in y of the current
cell. It is a function of l.

	lzp: The index of the “right” neighbor in z of the current
cell. It is a function of l.

	lzm: The index of the “left” neighbor in z of the current
cell. It is a function of l.

	l2D: The current index in a 2D field (eg: vmean). It is a function of (j,``k``).

	l2D_int: The current index in a 2D integer field (eg: a field of
shifts). It is a function if (j,``k``).

	ixm: i-index of the “left” neighbor in x of the current
cell, taking periodicity into account.

	ixp: i-index of the “right” neighbor in x of the current
cell, taking periodicity into account.

Coordinates:

	XC: center of the current cell in X. It is a function of the indices; must to be used inside a loop.

	YC: center of the current cell in Y. It is a function of the indices; must to be used inside a loop.

	ZC: center of the current cell in Z. It is a function of the indices; must to be used inside a loop.

	xmin(i): The lower x-bound of a cell.

	xmed(i): The x-center of a cell, same as XC but can be used outside a loop.

	ymin(j): The lower y-bound of a cell.

	ymed(j): The y-center of a cell, same as YC but can be used outside a loop.

	zmin(k): The lower z-bound of a cell.

	zmed(k): The z-center of a cell, same as ZC but can be used outside a loop.

Length:

	zone_size_x(j,k): Face to face distance in the x direction.

	zone_size_y(j,k): Face to face distance in the y direction.

	zone_size_z(j,k): Face to face distance in the z direction.

	edge_size_x(j,k): The same as zone_size_x, but measured on the lower x-border.

	edge_size_y(j,k): The same as zone_size_y, but measured on the lower y-border.

	edge_size_z(j,k): The same as zone_size_z, but measured on the lower z-border.

	edge_size_x_middlez_lowy(j,k): The same as edge_size_x but measured half a cell above in z.

	edge_size_x_middley_lowz(j,k): The same as edge_size_x but measured half a cell above in y.

Surfaces:

	SurfX(j,k): The lower surface of a cell at x=cte.

	SurfY(j,k): The lower surface of a cell at y=cte.

	SurfZ(j,k): The lower surface of a cell at z=cte.

Volumes:

	Vol(j,k): The volume of the current cell.

	InvVol(j,k): The inverse of the current cell’s volume.

You can see examples on how to use these variables in src/. They
are widely used in many routines.

Default SETUPS

FARGO3D was developed with simulations of protoplanetary disks in mind
but it is a sufficiently general code to tackle a lot of different
problems. This property makes that its ancestor, the public code FARGO,
is simply a particular case of the wide range of possible setups
that can be designed.

This section contains a brief summary of the setups that come with
the public version of FARGO3D. We develop in more detail the
setup called fargo.

We emphasize that a setup must not be confused with a set of
parameters, those being provided in a so-called parameter files (with
extension .par, by convention). A setup corresponds to a given
physical problem and geometry: in a setup we specify the grid
geometry, the equation of state to be used, whether we use the MHD
module. etc. In the parameter file we give specific values for a given
setup, such as the mesh size, parameters specific of the initial
conditions, etc. A given setup can be run with many different
parameter files without recompiling. Usually one file only is required
to run FARGO3D once it has been build for a given setup. This file is
the parameter file. There is an exception with some setups, like the
fargo setup, which in addition require a file in which the
planetary system initial configuration is specified. The planet files
(which by convention have the extension .cfg) have the exact same syntax
as in the former FARGO code, so planetary systems designed for a prior FARGO
calculation can be used straight away. There are located in the
sub-directory planets of the main directory. Their name and path
must be passed to the code through the string parameter PLANETCONFIG.

fargo

This setup is a legacy setup. The public FARGO code, ancestor of
FARGO3D, amounts to this particular setup of FARGO3D. This is the
default setup, and the initial conditions are taken from one of the EU
comparison setups. The setup is strictly comparable to the template.par
parameter file of the FARGO code.

We explain some special characteristics of the fargo setup:

Make options

This setup uses the following physical options, which are selected in
the file setups/fargo/fargo.opt:

	X

	Y

	CYLINDRICAL

	ISOTHERMAL

	VISCOSITY

	POTENTIAL

	STOCKHOLM

It also activates the following flag:

	LEGACY

which requests the output of two files dumped by the former FARGO
code: dims.dat and used_rad.dat, which can be needed by
certain reduction scripts.

As can be seen also in the .opt file, it has the monitoring of the:

	MASS

	MOM_X

	TORQ

We shall come back to the monitoring of quantities later on in this
manual

Parameters

The following parameters are essentially the same as those of the
FARGO code. You can also browse the online help of that code to get
the detail of each of them.

	Setup: This keyword specifies the name of the setup that should
be used to build the code in order to run this parameter file. If it
is left unspecified, this parameter file can be run using a build of
FARGO3D with otvortex, mri, etc., with potentially
surprising error message and outcomes.

	AspectRatio: (real). Sets the disk aspect ratio (\(h_0 =
H/R_0\)) at \(r=R_0\), where \(R_0\) is a characteristic
length, defined in src/fondam.h. It is a natural choice to use
\(R_0=1\) in a scale free setup. Physically, this parameter is
related to the sound speed through:

\[\displaystyle{\frac{H}{r} = \frac{c_s}{\Omega_k r}}\]

This parameter is a way to initialize a desired sound speed on the disk.

	Sigma0: (real) Sets the numerical value of the surface density at \(r=R0\).

	SigmaSlope: (real) Sets the exponent of the density profile,
assumed to be a power law of radius:

\[\displaystyle{\Sigma(r) = \text{Sigma0}\left(\frac{r}{R_0}\right)^{\text{-SigmaSlope}}}\]

	FlaringIndex (real) Sets the flaring of the disk. If it is null, the aspect ratio of the disk is constant (ie, the disk height scales linearly with r). The dependence of the the aspect ratio with the flaring index is:

\[\displaystyle{h(r) = \frac{H}{r} = h_0\left(\frac{r}{R_0}\right)^{\text{FlaringIndex}}=\text{AspectRatio} \left(\frac{r}{R_0}\right)^{\text{FlaringIndex}}}\]

	PlanetConfig: (string) The name the planetary file to be used. The
path is relative to the location at which you launch the code.

	ThicknessSmoothing: (real) Potential smoothing length for all
the planets. The use of this parameter is mutually exclusive with
the use of *RocheSmoothing*. The smoothing length \(s\) of the potential is “\(\text{ThicknessSmoothing} \times H\)”:

\[\begin{align}\begin{aligned}\displaystyle{s = \text{AspectRatio} \times
\left(\frac{r}{R_0}\right)^{\text{FlaringIndex}}\times r \times \text{ThicknessSmoothing}}\\\text{The potential of a planet of mass m_p has the form: }
\displaystyle{\phi = -\frac{Gm_p}{\sqrt{r^2+s^2}}, \text{where r
is here the distance to the planet.}}\end{aligned}\end{align} \]

	RocheSmoothing: (real) Potential smoothing length for all the
planets. The use of this parameter is mutually exclusive with the
use of ThicknessSmoothing. The smoothing length of the potential
over the mesh is “\(\text{RocheSmoothing} \times R_h\)”, there
\(R_h\) is the Hill radius of the current planet:

\[\displaystyle{s = \text{RocheSmoothing}\times r\times \left(\frac{m_p}{3M_{star}}\right)^{1/3}}\]

	Eccentricity: (real) The initial eccentricity of all the planets.

	ExcludeHill: (boolean) When this parameter is set to YES, a
cut-off is introduced when the force is computed. The cut-off is calculated with the formula:

\[\begin{align}\begin{aligned}h_c = 0 \;\;\;\text{ if } r/r_{Hill} < 0.5\\h_c = 1 \;\;\;\text{ if } r/r_{Hill} > 1.0\\h_c = \sin^2\left[\pi \left(r/r_h - 1/2 \right)\right] \;\;\;\text{ otherwise }\end{aligned}\end{align} \]

and the force is cut off prior to the torque calculation (see src/compute_force.c):

\[F_{\text{cut off}} = F \times h_c\]

Note

This parameter needs the make option called HILLCUT
to be activated in the .opt file (it is because this cut is somehow
expensive on the GPU). This is achieved by adding this line to
the setups/fargo/fargo.opt file: FARGO_OPT += -DHILLCUT

IndirectTerm: (boolean) Selects if the calculation of the
potential indirect term that arises from the primary acceleration due
to the planets’ (and possibly the disk’s) gravity is performed. In the
fargo setup, the reference frame is by default centered on the
central star (see also Removing the default central star). For this reason,
this parameter should normally be set to yes. If the preprocessor
macro GASINDIRECTTERM is undefined, the indirect term only arises
from the planet’s acceleration imparted to the primary. If, on the
contrary, this macro is defined, the acceleration imparted to the
primary by the disk is also taken into account. Defining this macro
can be done in the .opt file using the line: FARGO_OPT +=
-DGASINDIRECTTERM.

Frame: (string) Sets the reference frame behavior: F (Fixed), C
(Corotating) and G (Guiding center) (it is case insensitive). When it
is set to F, the frame rotates at a constant angular speed, specified
by OmegaFrame. When it is set to Corotating, the frame corotates
with planet number 0. If this planet migrates or has an eccentric
orbit, the frame angular speed is not constant in time. When it is set
to Guiding-Center, the frame corotates with the guiding-center of
planet 0. The frame angular speed, therefore, varies with time if the planet
0 migrates, and it does so in a smoother manner than in the Corotating
case.

OmegaFrame: (real) It is the angular velocity of the reference frame. It has sense only if the parameter Frame is equal to F (Fixed).

boundaries

Because this problem is 2D in XY, only boundary conditions in Y are
applied. The boundary conditions are an extrapolation of the Keplerian
profile for the azimuthal velocity, the density is also extrapolated
using its initial power law profile, and an antisymmetric boundary
condition on the radial velocity is applied.

If STOCKHOLM is activated (in the .opt file), the wave-killing
recipe of De Val-Borro (2006) is used to damp disturbances near the
mesh boundaries in radius (or colatitude for more general setups such
as p3diso). The width of the margin over which a wave killing
boundary condition is applied near a boundary is defined by the
parameters DampingZone for the radial boundaries and
KillingBCColatitude for the boundaries in colatitude. The former
represents the ratio of the orbital periods between the edge of the
wave-killing zone and the corresponding edge of the mesh. The default
value of 1.15 implies that the wave-killing zones have a width
approximately equal to 10% of the radius of the mesh edge
(\(1.15^{2/3}\approx 1.10\)). KillingBCColatitude represents
the fraction of the angle between the mesh limit and the midplane over
which the damping prescription is applied. It defaults to 0.2. You can
use a value smaller than one for DampingZone to suppress the
wave-killing boundary condition at radial boundaries, and you can use
a negative value for KillingBCColatitude to suppress this
prescription in the boundary in colatitude.

In Cylindrical setups, no damping is applied in the Z-boundary if the
setup is periodic along that direction (such as in unstratified MRI),
and a 10% margin is applied otherwise. This is hardcoded in
src/stockholm.c.

Note

It is not recommended to use a wave-killing boundary
condition in colatitude when a gap-opening planet is present
in the disk: replenishing the gas at high altitude tends to
prevent the opening of the gap. At the very least, if a
wave-killing boundary condition is used in this case, it
should not be applied on the density (the corresponding line
should be commented out in src/stockholm.c).

Note

the default value of 1.15 for DampingZone is smaller than
the recommended value of 1.5 found by Benitez-Llambay et al. (2016,
ApJ, 826, 13). Using this value would require much larger
radial ranges for the meshes of the public setups provided
in the distribution. As a consequence, a minute amount of
wave reflection may be noticed with these setups even when
the wave-killing prescription is activated.

Orszag-Tang Vortex

This setup corresponds to the well known 2D periodic MHD setup of
Orszag and Tang, widely used to assess the properties of MHD solvers.
We briefly go through the make options of the .opt file and through
the parameter file.

Make options

Here are the options activated in the .opt file:

	X

	Y

	Z

	MHD

	STRICTSYM

	ADIABATIC

	CARTESIAN

	STANDARD

	VANLEER

The first four lines are self-explanatory.

Note

Even though the Orszag-Tang setup is a 2D setup, every time the MHD
is included, all three dimensions should be defined. This is why
we define here X, Y, and Z.

The flag STRICTSYM on the fifth line is meant to enforce a strict
central symmetry of the scheme. Usually, after some time (the amount
of time depends on the resolution) the central vortex begins to drift
in some direction, breaking the initial central symmetry of the
setup. It can be desirable to check whether this break of symmetry
arises as a consequence of amplification of noise, or because the
scheme contains a bug that renders it non-symmetric. We have found
that, at least on the CPU, asymmetries in the scheme arise from
additions of more than two terms, which are non-commutative. As the
MHD solver implies, at several places, arithmetic averages of four
variables, we need to group them by two in order to enforce
symmetry. If the initial conditions are strictly symmetric, the fields
will then remain symmetric forever. The interested reader may “grep”
STRICTSYM in the sources. This trick does not work on the GPUs on
which we have tested it, however.

The other make flags have already been discussed in the fargo
setup.

Parameters

The parameter file is short and each of its variables is
self-explanatory.

Suggested run

You may activate run time visualization to see the vortex evolve (you
must have installed matplotlib for that):

$ make SETUP=otvortex GPU=0 PARALLEL=1 view
$ mpirun -np 4 ./fargo3d -m setups/otvortex/otvortex.par

Sod shock tube 1D

This very simple setup is self-explanatory. You may obtain information
about it by issuing at the command line:

make describe SETUP=sod1d

If you build it with run-time visualization, a graph of a field is
displayed in a matplotlib window. This field is selected by the
variable Field of the parameter file.

MRI

The setup mri (lower case) corresponds to an MHD turbulent
unstratified disk on a cylindrical mesh, periodic in Z, much similar
to the setup of Papaloizou and Nelson 2003, MNRAS 339, 983. The data
provided in this public release have the same coverage and resolution
as the data by Baruteau et al. 2011 A&A, 533, 84. We present hereafter
in some detail the make options and the parameter file, and we provide
a hands-on tutorial on reducing data from this setup.

Make options

The file setups/mri/mri.opt shows that the following options are
defined at build time:

	FLOAT

	X, Y, Z, MHD

	ISOTHERMAL

	CYLINDRICAL

	POTENTIAL

	VANLEER

The FLOAT option runs everything that is related to the gas in single
precision (should we have planets, their data would remain in double
precision). This speeds up by a factor ~2x the simulation, both on
CPUs and GPUs.

The other flags have already been explained in the previous setups. We
note that here, counter to what was set in otvortex, we do not
request the STANDARD flag for orbital advection. Therefore, by
default, the scheme will use the fast orbital advection (aka FARGO)
described for hydrodynamics by Masset (2000), A&ASS, 141, 165, and for
the EMFs by Stone & Gardiner, 2010, ApJS, 189, 142.

Parameter file

This parameter file, as said earlier, corresponds to the “disks”
contemplated in Baruteau et al (2011), with a radial range from 1 to 8
and from -0.3 to 0.3 in z, half a disk in azimuth, and an “aspect
ratio” of 0.1 (the word aspect ratio is misleading here; it merely
imply that \(c_s=0.1v_k\) everywhere in the disk). Besides, the
mesh is rotating so as to have its corotation at r=3. The initial
\(\beta\) of the gas is 50, and the initial magnetic field is
toroidal (see setups/mri/condinit.c). Some shot noise is
introduced on the vertical and radial components of the velocity, with
an amplitude of NOISE percent of the local sound speed (therefore
here 5%).

Some resistivity is introduced. As there is a file called
resistivity.c in the setup directory, it supersedes the same file
in the src directory. We see that this file implements a linear
ramp of resistivity near each radial boundary, of radial width 1/7th
of the radial extent, hence here of radial width 1.

Hands on test

We hereafter run the setup for 300 orbits at the disk’s inner edge,
and examine some statistical properties of the turbulence that arises.

To start with, we forget any prior build option of the code:

make mrproper

We then build the mri setup. Owing to the computational cost, it is
a good idea to run it on one or several GPUs. In what follows, we take
the example of a run on one GPU. The run takes about 10 hours to
complete on one Tesla C2050. You can degrade the resolution to speed
things up during your first try.

It is a good idea, also, to tune the CUDA block size prior to running
the setup (you may skip this part if you wish). Execution will be
10-20% faster.:

make blocks setup=mri

Note that everything is lower case in the line above. It will take a
few minutes to complete. Upon completion, issue:

make clean
make SETUP=mri GPU=1

and the code is built using the block size information previously
determined, or using a default block size (architecture independent)
if you skipped the action above.

We now start the run:

./fargo3d -mt in/mri.par

The t option above activates a timer that will give you an idea
of the time it takes to complete a run.

You can see that there are several files in the output directory
(presumably outputs/mri if you have not changed this value of the
variable OUTPUTDIR in the parameter file), called respectively:

	reynolds_1d_Y_raw.dat

	maxwell_1d_Y_raw.dat

	mass_1d_Y_raw.dat

that grow in size progressively, every time a carriage return is issued
after a line of “dots” 1. This kind of file is presented in detail in
the section Monitoring later on in this manual. For the
time being, it suffices to know that these are raw, binary 2D files,
to which a new row is added every DT (fine grain monitoring). This
row contains radial information (as indicated by the _Y_ component of
the file name: Y is the radius in cylindrical coordinates). Let us try
and display one of these files (with Python). We start ipython
directly from the output directory:

$ ipython --pylab
...
In[1]: n = 10 #assume you have reached 10 outputs. Your mileage may vary.
In[2]: ny=320 #Radial resolution. Adapt to your needs if you altered the par file
In[3]: m=(fromfile("reynolds_1d_Y_raw.dat",dtype='f4'))[:n*10*ny].reshape(n*10,ny)
In[4]: imshow(m,aspect='auto',origin='lower')
In[5]: colorbar()

Note

A few comments about these instructions. In the third line
we read the binary file “reynolds_1d_Y_raw.dat” and specify
explicitly with the dtype keyword that we are reading single
precision floating point data (fromfile otherwise expects to
read double precision data). The trailing [:n*10*ny] truncates
the long 1D array of floating point values thus read up to the row
value number n*10 (10 because this is the value of
NINTERM). This 1D array is finally reshaped into a 2D array,
plotted on the following line

You should see a figure such as:

[image: _images/reynolds.png]
Figure obtained with the above Python instructions (here
with n=150, ie upon run completion)

On this plot, the x-direction represents the radius, whereas in the
y-direction we pile up the radial profiles that have been dumped every
DT. Therefore the y-direction represents the time. If we remember
that the file name has radix reynolds, we are obviously looking at
some quantity related to the Reynold’s stress tensor, and we see how
turbulence develops in the inner regions and progresses toward larger
radii as time goes on. But what is exactly the quantity that we plot ?

It is:

\[\displaystyle{R(r)\Delta r = \int_\phi rd\phi\int_z dz\rho
v_r(v_\phi-\overline{v_\phi}) \Delta r}\]

That is to say, it is the sum in \(z\) and in \(\phi\) of the
quantity:

\[\displaystyle{\rho v_r(v_\phi-\overline{v_\phi})\times\mbox{ cell
volume} }\]

This quantity is evaluated in src/mon_reynolds.c and it is
subsequently passed to the systematic machinery of
Monitoring.

In the same vein, we can plot the quantities found respectively in
maxwell_1d_Y_raw.dat and in mass_1d_Y_raw.dat.
There are the vertical and azimuthal sum on all cells of the following
quantities:

\[\displaystyle{\frac{B_rB_\phi}{\mu_0}\times \mbox{ cell volume}}\]

and

\[\displaystyle{\rho\times \mbox{ cell volume}}\]

We see that the value of \(\alpha\) can therefore be obtained as
follows:

r=(arange(ny)+.5)/ny*7+1
cs2 = 0.01/r
cs2array = cs2.repeat(10*n).reshape(ny,10*n).transpose()
reyn=(fromfile("reynolds_1d_Y_raw.dat",dtype='f4'))[:n*10*ny].reshape(n*10,ny)
maxw=(fromfile("maxwell_1d_Y_raw.dat",dtype='f4'))[:n*10*ny].reshape(n*10,ny)
mass=(fromfile("mass_1d_Y_raw.dat",dtype='f4'))[:n*10*ny].reshape(n*10,ny)
alpha_maxwell = -maxw / (mass * cs2array)
alpha_reynolds = reyn / (mass* cs2array)
alpha = alpha_maxwell + alpha_reynolds
imshow (alpha, aspect='auto', origin='lower'); colorbar ()

which gives the following picture:

[image: _images/alpha2d.png]

We plot the different time averaged values of \(\alpha\) once the
turbulence has reached a saturated state:

plot(r,alpha_maxwell[500:,:].mean(axis=0))
plot(r,alpha_reynolds[500:,:].mean(axis=0))
plot(r,alpha[500:,:].mean(axis=0))

which gives the following plot:

[image: _images/alphavsr.png]

We finally plot the radially averaged value of \(\alpha\) between
r=2 and r=6 (corresponding to bins 46 to 228 in Y) as a function
of time:

plot(arange(1500)*1.256,alpha[:,46:228].mean(axis=1))

which gives the following plot:

[image: _images/alphavst.png]

We see that we obtain a relatively substantial value for
\(\alpha\) in this fiducial run (much larger than the one obtained
with same parameters in the run with NIRVANA in Baruteau et
al. (2011), at Fig. 6). One reason for that is the use of
orbital advection, another one is the systematic use of the van
Leer slopes in the upwind evaluation of all quantities involved
in the MHD algorithm. Comparison with other code of the Orszag-Tang vortex at
different resolutions corroborates this statement.

See also

Monitoring

	1

	Each dot stands for an elementary HD or MHD time step. The
number of dots on a line (which has length DT) is given by
the CFL condition.

.opt files

FARGO3D is a very versatile code. It can solve from a very simple
sod shock tube test to a tridimensional problem with MHD. In order to
keep the versatility without a performance penalty, we have adopted an
extensive use of macrocommand variables. These variables allow one to
activate/deactivate a lot of sections of the code depending on what we
want to solve. For example, if we want to solve a 2D planetary disk
without MHD, the code does not need to know anything about MHD. In this
case, an “if run time sentence checking whether we want to use MHD
or not, would be
expensive. With the help of this compiler variables through
#ifdef statements, all the
job is done at compilation time.

Most of these variables are defined in the .opt file, but there
are other ones (for example FARGO_DISPLAY), that are defined during the
Make Process.

The variables must be defined inside a container variable, called
FARGO_OPT, as follows

FARGO_OPT += -DVARIABLE.

In this version, the list of options/modules that can be activated from the .opt file is:

Performance:

	FLOAT: Uses single precision floating point data. On GPUs,
the code runs ~2x times faster. If FLOAT is not defined, the code will be run in double precision.

Dimensions:

	X: Activates the X direction.

	Y: Activates the Y direction.

	Z: Activates the Y direction.

Note: Some fields are not available until one specific direction is activated.

Equation of state:

	ADIABATIC: The equation of state \(P=(\gamma-1)e\) will be
used. The field Energy is the volumic internal energy \(e\).

	ISOTHERMAL: The equation of state \(P=cs^2\rho\) will be used.
The (ill-named) field Energy is then the sound speed of the fluid.

Additional Physics:

	MHD: Activates the MHD solver. It is necessary to have X, Y & Z all activated.

	STRICTSYM: Only makes sense if MHD is activated. It enforces a strict symmetry of the MHD solver.

	VISCOSITY: Activates the viscosity module with a constant kinematic viscosity defined by the parameter NU.

	ALPHAVISCOSITY: Activates the viscosity module with a constant alpha viscosity defined by the parameter ALPHA (Shakura-Sunyaev (1973) Viscosity Prescription).

	POTENTIAL: Activates the gravity module.

	RESISTIVITY: Activates the magnetic diffusion module.

	STOCKHOLM: Activates wave killing boundary conditions in Y & Z. Very
useful for local studies where reflections on the edges must be avoided.

	HILLCUT: Activates a cut for the force computation. Must to be
defined in order to accept ExcludeHill parameter file
variable set to yes.

Coordinates:

	CARTESIAN: x,y,z are Cartesian.

	CYLINDRICAL: x –> azimuthal angle, y –> cylindrical radius, z –> z.

	SPHERICAL: x –> azimuthal angle, y –> spherical radius, z –> colatitude.

Transport:

	STANDARD: Forces the standard advection algorithm in x. By default,
the x-advection is done with the orbital advection (FARGO) algorithm.

Slopes:

	DONOR: Activates the donor cell flux limiter for the
transport. Actually, deactivates the default van Leer’s second order
upwind interpolation.

Artificial Viscosity:

	NOSUBSTEP2: If it not defined, the artificial viscosity module, called Substep2(), is invoked.

	STRONG_SHOCK: If strong shocks make the code crash, you may try
using this variable. It is never used in the tests. It uses a
linear, rather than quadratic, artificial pressure.

Cuda blocks:

The cuda blocks must be defined in the form:

ifeq (${GPU}, 1)
FARGO_OPT += -DBLOCK_X=16
FARGO_OPT += -DBLOCK_Y=8
FARGO_OPT += -DBLOCK_Z=4
endif

This is needed to define a default block size for GPU
kernels. Alternatively, for a given platform, you may determine
individually for each CUDA kernel (“routine”) which block size gives
best results.

See also

Improving CUDA Performance

There is a special set of variables not contained in the FARGO_OPT variable:

MONITOR_2D
MONITOR_Y
MONITOR_Y_RAW
MONITOR_Z
MONITOR_Z_RAW
MONITOR_SCALAR

Those are used at build time to request systematic, fine grain monitoring.
The meaning of these variables is explained in Monitoring.

N-Body solver

Introduction

One feature that FARGO3D has inherited from its ancestor FARGO is the
possibility to include a number of point-like masses which can
interact between themselves and which can also gravitationally
interact with the gas. The set of such masses is defined in a
file. This file must be defined in the parameter file with the
parameter PlanetConfig. For instance, in the default parameter file
of the fargo setup (that is, setups/fargo/fargo.par), we find the
line:

PlanetConfig planets/jupiter.cfg

Throughout this chapter, we call this file the config file, or the
planetary configuration file.
The content of this file is strictly similar to that defined in the
previous FARGO code:

###
Planetary system initial configuration
###

Planet Name Distance Mass Accretion Feels Disk Feels Others
Jupiter 1.0 0.001 0.0 NO NO

Lines beginning with a ‘#’ are ignored. A line containing a valid
planet definition must begin with a letter (‘a-z’ or ‘A-Z’). So far
this name is not reflected in the code output, but it gives a sense
of what kind of planet or planetary system is intended. The second
column gives the semi-major axis in units of R0, defined in
src/fondam.h. The third column gives the planetary mass in units of
MSTAR, defined also in src/fondam.h. The fourth column, relative
to accretion, is not used at the present time. So far its only
purpose is to allow backward compatibility with FARGO’s planetary
config files. Finally, the content of the last two columns, which is
self-explanatory, indicates whether the planet feels the gravity of
the other planets and whether it feels the gravity of the disk.

Note

Our N-Body solver is a simple fifth order Runge-Kutta
integrator. This may seem pretty simplistic compared to way more
sophisticated N-body integrators, which are tailored to follow the
dynamics of a collection of point-like masses in vacuum over very
long timescales. It should be remembered that our primary purpose
is the study of protoplanets embedded in disks. The lifetime of the
disk is 3 to 4 orders of magnitude shorter than the age of the
Solar System, and the variation of total energy of planet under a
disk tide is usually many orders of magnitude larger than that
inherent to our scheme. The latter is therefore perfectly fine for
our purpose.

The planets are initialized at \(t=0\) such that they lie on the
\(x\) axis, are prograde with the disk, have all same
eccentricity (defined by the parameter ECCENTRICITY, which defaults
to zero). Their initial location corresponds to apoastron.

Warning

By default, a central star of mass MSTAR (defined in
src/fondam.h) is added at the mesh center. This default behavior
can be superseded, for instance, to have the mesh centered on the
center of gravity of the system, or to have a binary star at the center.

The value of MSTAR is used to initialize the orbits of the planets,
in all cases.

Removing the default central star

In some cases, you want to remove the default central star which is
assumed to exist at the mesh center. In order to do so, so simply need
to add the following line to your .opt file and rebuild:

FARGO_OPT += -DNODEFAULTSTAR

Planets which are stars

Starting from version 1.2, FARGO3D detects in the configuration file
of the planetary system which objects are massive enough to be
considered as stellar, and deals with them in a specific way. Our
arbitrary threshold, defined in src/fondam.h, is 0.05*MSTAR, which
would correspond to a typical brown dwarf if MSTAR is one solar
mass. This threshold can be redefined depending on the user’s
needs. The number of stellar objects detected in the configuration
file can be 0, 1 or 2. Beyond this number, an error message is issued.

The array below summarizes a variety of possible setups. The first
line corresponds to the default behavior. The last two columns
indicate whether the user should define NODEFAULTSTAR (in the opt
file) and what value should be given to MSTAR (in
src/fondam.h). Note that whenever NODEFAULTSTAR is defined, all
stellar objects must be explicitly given in the configuration file.

	Intended setup

	NODEFAULTSTAR

	MSTAR

	One star at mesh center

	
	mass of central star

	One star. The mesh is
centered on the center
of mass of the star and
planets.

	Defined

	mass of central star

	Circumbinary disk

	Defined

	mass of binary

	Circumstellar disk in
binary system

	
	mass of star at disk
center

Note

What is the reason for defining manually MSTAR in the second and
third rows of this table ? The reason is that this variable is used
throughout the code to perform a variety of tasks, such as:

	initialization of the planetary orbits

	evaluation of the Roche radius (for potential smoothing issues)

	evaluation of the planet’s orbital elements

so it is important that its value matches that of the mass of the
object(s) at the disk center. Also, note that the orbit[i].dat
output files contain correct values only for the first kind of
setup.

When one uses the third setup in the array above, the code enforces
that the mesh be centered on the center of mass of the binary (and
not of the system), and the components of the binary start do not
feel the gas or the planets. The indirect term, if included, arises
from the acceleration of both components of the binary, weighted by
their mass. See the setup binary for an example.

Initialization of the position and velocities of the stellar objects

The initial position
and velocity of the stellar objects differ from that of the planets,
in the case in which there is no default central star.

If one stellar object is given, its position and velocity is set so
that the center of mass of the planets and star is at the mesh
center, and so that this point does not move with respect to the mesh.

If two stellar objects are found, the parameters of the second column
of the config file, usually devoted to the distance to the star, takes
a different meaning. For the first star, the value found is used as
the binary period, and for the second star, the value found is used as
the binary eccentricity. The binary system is initialized on the \(x\)
axis, at apoastron, and the first star has \(x>0\). The mesh is centered
on the center of mass of the binary. See the file
planets/Kepler38.cfg for an example.

Indirect term

Whenever the center of the frame is accelerated, an additional
potential term, called the indirect term, is added to the potential,
which corresponds to the fictitious force arising from the frame
acceleration. This indirect term can be purposely discarded, by
setting the parameter IndirectTerm to NO (the default is
YES).

Initial eccentricity and inclination

All objects are initialized with the same eccentricity, defined by the
ECCENTRICITY parameter (its default value is zero), and they are
initially set at apoastron. If a different setup is needed, some
edition of the file src/psys.c is required. Alternatively, one may
edit manually the planet files (planet[i].dat, see also
Planet files).

In a similar manner, all objects are initialized with the same
inclination, defined by the INCLINATION parameter (its default
value is zero, and it is given in radians). The \(x\)- axis
(\(x>0\)) on which the planets are set at the start of simulation
corresponds to the ascending node: the planets are initialized with
\(z=0\) and \(v_z>0\).

Convenience parameters: PLANETMASS, SEMIMAJORAXIS and ORBITALRADIUS

In order not to have to edit the planetary configuration file (which
can be useful to spawn easily a parameter space exploration), we have
defined three convenience parameters: PLANETMASS, SEMIMAJORAXIS and
ORBITALRADIUS. Their default value is 0. When the first two
(PLANETMASS and SEMIMAJORAXIS) differ from
zero, they are used to supersede the values given in the planetary
configuration file for the first planet only. When the last one
(ORBITALRADIUS) is set to a value different from zero, this value
is used to rescale the semi-major axis of all planets prior to the run
start. This parameter is, therefore, a dimensionless factor that can be
used to expand or shrink the whole planetary system. This is mainly
useful in parameter space explorations.

Correcting the shift of resonances

The gas in FARGO3D is not self-gravitating: it orbits in the potential
of the star exclusively. On the other hand, a planet which feels the
gas gravity orbits in a slightly different potential, which is the sum
of the stellar and disk potential. The Lindblad and corotation
resonances of an embedded planet are shifted (with respect to a more
consistent situation in which the gas would be self-gravitating) as a
consequence of this mismatch. This has sizable effects on the measured
migration velocity of a planet moving freely in the disk, as shown by
Baruteau and Masset (2008). A workaround to this problem consists in
removing the azimuthally averaged density to the density of each zone
prior to the force evaluation: if the disk were unperturbed, the
planet would exclusively feel the star’s gravity. In order to activate
this workaround in the code, one has
to add the following line to the`.opt` file and rebuild:

FARGO_OPT += -DBM08

Units

Introduction

Unlike its ancestor FARGO, FARGO3D comes with a variety of unit
systems. The reason for this is twofold:

	Working in a different unit system may help reveal bugs. Let us take
a simple example to illustrate this: assume that somewhere in an
azimuthal derivative calculation, a developer has divided by the
angular step rather than the linear one (or vice-versa), i.e. he has
forgotten to divide (or multiply) by the cylindrical radius. When
working in scale-free units, where one usually takes radii
commensurable to one, this mistake may remain unnoticed for a long
time, especially if it is hidden in a part which has a small impact
on the evolution of the flow (such as the viscous stress tensor, for
instance). If one switches to MKS or cgs, where the radii have
values which are typically 10 to 14 orders of magnitude larger, such
errors appear straight away. In fact, we have developed tests to
check the dimensional homogeneity of all parts of the code. We run
it a first time in a given system of units, then we rerun it in
another system of units and check that the ratio of the two outputs
is flat, to the machine precision. You may have a look at the test
named dimp3diso.py in the directory test_suite/. You can run it from
the main directory by issuing:

make testdimp3diso

	The other reason for implementing a variety of unit systems comes
from the user feedback of the FARGO code. About half of the
questions that we received on the code had to do with
units. Besides, as the code gains in complexity, by the inclusion of
MHD or radiative transfer, it may become desirable to switch to a
standard system of units, where constants have a well-known value
(if you are not convinced, try to work out what is the value of
Stefan’s constant in a system of units where the solar mass is the
mass unit, one astronomical unit the length unit, such that G, the
gravitational constant, has value one, and where the ratio of the
ideal gas constant over the mean molecular weight has also value
one). Finally, the output of FARGO3D may be used by third party
codes, such as radiative transfer codes that produce a simulated
image, and having the data in a standard unit system may prove useful.

Specifying the unit system

The unit system must be specified at build time. The different systems
are defined in the file named “fondam.h”. The unit system used to
build the code depends on whether the preprocessor variable MKS, or
CGS, is defined. If none of them is defined, a trivial unit system
(dubbed “scale-free”) is adopted. From the makefile, activating one or
another of these preprocessor variables is done as follows:

make UNITS=MKS

or:

make UNITS=CGS

Finally, to use the scale-free system of units, issue:

make UNITS=0

Note

As other build options, the UNITS flag is sticky: is keeps implicitly
its previous value until it is changed explicitly.

We note that specifying the unit system in the FARGO3D code is done by
giving a numerical value to five constants that have linearly
independent powers of \(M\), \(L\), \(T\), \(\theta\)
and \(I\) (mass, length, time, temperature and electric
intensity). These constants are the gravitational constant \(G\)
(G, with units \(M^{-1}L^3T^{-2}\theta^0I^0\)), the central star
mass \(M_\star\) (MSTAR, with units
\(M^{1}L^0T^{0}\theta^0I^0\)), a length \(R_0\) (R0, with
units \(M^{0}L^1T^{0}\theta^0I^0\)), the ratio of the ideal gas
constant to the mean molecular weight \({\cal R}/\mu\) (R_MU, with
units \(M^{0}L^2T^{-2}\theta^{-1}I^0\)), and the value of the
magnetic permeability of vacuum \(\mu_0\) (MU0, with units
\(M^1L^1T^{-2}\theta^{0}I^{-2}\)).

Naturally, if you specify the CGS unit system, your parameter file
must provide all real variables in this unit system: YMIN/YMAX must be
in centimeters, and so must be ZMAX/ZMIN in cylindrical or Cartesian
coordinates, and XMIN/XMAX in Cartesian coordinates. Similarly, NU
must be in cm^2/s, the planetary mass in the .cfg file must be in
grams, and so on and so forth. There is, however, an exception to this,
when one uses the RESCALE directive, as we explain below.

Rescaling the input parameters

Previous users of FARGO are certainly used to scale-free input
parameters, in which the central star mass is set to one, the planet’s
orbital radius set to one, and the gravitational constant set to
one. The orbital period is, therefore \(2\pi\). You may require
that FARGO3D be run in a unit system such as cgs or MKS, without
editing your scale-free parameter file. For this purpose, you must
build FARGO3D with the rescale option:

make UNITS=MKS RESCALE=1

Once the parameters are read from the parameter file, they are
rescaled using rescaling rules. For instance, the value of YMIN (the
mesh minimal radius, in cylindrical or spherical geometry) is
multiplied by \(R_0\). Similarly, the value of SIGMA0 (the disk’s surface
density, if your setup uses one) is multiplied by
\(M_\star/R_0^2\), etc. This allows to get an output in a standard
unit system while keeping scale-free input files, the content of which
is probably more intuitive.

Specifying the scaling rules

A scaling rule for a variable is a product of the five dimensionally
independent variables
(\(G\),
\(M_\star\),
\(R_0\),
\({\cal R}/\mu\) and
\(\mu_0\)), each raised to a specific power, that determines
uniquely the dimension of a variable. A scaling rule for a given
variable is unique. If it is cast incorrectly, the code will not pass
the homogeneity test (if this variable is used in the setup tested).

The scaling rules are required exclusively if you build the code with
the RESCALE flag activated, so as to have a dimensional output with
scale-free input parameters. You can have a look at the file
std/standard.units. You can see that each line looks like C code
(no ; is required at the end), and the right-hand side of the *=
symbol has the same unit as the left-hand side. The scaling rules for
some variables is trivial (e.g. SIGMA0, which is a surface density, or
PLANETMASS, which is a mass).

During the make process the python script scripts/unitparser.py
is run, which scans all real variables known to the code (that is
everything in the setup .par file found to be a real value). If
it finds it in the scaling rules it has access to (those of
std/standard.units
plus, if any, in setups/SETUP/SETUP.units, in case your setup
defines new real variables), it copies that rule in a file made
automatically that is called rescale.c, and which contains the
rescaling routine called before entering the main loop if you have
made a built with the RESCALE option.

If it does not find a scaling rule for a variable it issues a warning
asking to check whether this variable is dimensionless. Since the
output of this script is found at the very beginning of the make
process, and may be unnoticed, it can be a good idea to run the script
separately. You have to do that from the src/ directory:

$ cd src
$ python ../scripts/unitparser.py mri
Warning ! Scaling rule not found for FLARINGINDEX. Is it dimensionless ?
Warning ! Scaling rule not found for SIGMASLOPE. Is it dimensionless ?
Warning ! Scaling rule not found for BETA. Is it dimensionless ?
Warning ! Scaling rule not found for NOISE. Is it dimensionless ?
Warning ! Scaling rule not found for ASPECTRATIO. Is it dimensionless ?

You can verify that each of the variables found by the script is
indeed dimensionless. This list is naturally setup dependent, and the
above example is for the set mri.

Warning

Upon completion of the manual run of the script as above, you MUST
go to the ../bin directory and remove manually the file
rescale.c leftover by the script. Otherwise, for dependency
reasons, the makefile will not remake it automatically at the next build.

Defining a new SETUP

This section is a small tutorial on how to define a setup from
scratch. In this tutorial we will implement a hydrodynamics
setup. The setup we will define is “blob”, that comes implemented in
the public version of FARGO3D.

Blob test

This is a 2D test characterized by a uniform fluid, with a denser
fluid disk embedded. The system is force-balanced (ie in pressure
equilibrium) if there is no velocity between the two fluids. The
disk is moving at a supersonic speed. In order to compare our
results, we will develop the same parameters as
http://www.astrosim.net/code/doku.php?id=home:codetest:hydrotest:wengen:wengen3.

Parameters of the test:

	Mach number: 2.7

	Density jump: 10

	Pressure equilibria

	gamma: 5/3

We will do the test in the XY plane, and we will implement periodic
boundaries in X and reflexive boundaries in Y. We will do a second
test with free outflow boundaries in Y.

In order to implement this setup we need:

	A setup name: In this case will be “myblob”.

	Therefore a directory inside setups/ called myblob.

	the .bound file in that directory, called myblob.bound.

	the .par file in that directory, called myblob.par.

	the .opt file in that directory, called myblob.opt.

	the file called condinit.c in that directory. This is where the fields are initialized.

Optionally:

	the .units file, called myblob.units.

	the .mandatory file, called myblob.mandatory.

	the .objects file, called myblob.objects.

	A boundaries.txt file (if it is not present it will be taken
from the std/ directory).

Making the setup directory:

We start by creating the setup directory myblob:

$: cd setups/
$: mkdir myblob

Defining boundaries:

We define from scratch all the boundaries in the setup. In order to do
that we create a file called boundaries.txt inside setups/myblob/:

$: emacs boundaries.txt

Naturally, you may use your favorite editor instead of emacs…

Now, we write these lines:

SYMMETRIC:
 Centered: |a|a|
 Staggered: |a|a|a|

ANTISYMMETRIC:
 Staggered: |-a|0|a|

We will use the SYMMETRIC boundary for both reflective and free
outflow boundaries,
and ANTISYMMETRIC only for the normal velocity Vy in the reflective case.

We must create the file myblob.bound:

$: emacs myblob.bound

And write this lines:

Density:
 Ymin: SYMMETRIC
 Ymax: SYMMETRIC

Energy:
 Ymin: SYMMETRIC
 Ymax: SYMMETRIC

Vx:
 Ymin: SYMMETRIC
 Ymax: SYMMETRIC

Vy:
 Ymin: ANTISYMMETRIC
 Ymax: ANTISYMMETRIC

We say that all our fields are symmetric, but vy should be reflected
in Y. This set is the reflective boundary condition on Y. The free
outflow is the same, except for:

Vy:
 Ymin: SYMMETRIC
 Ymax: SYMMETRIC

Defining the parameter file

The parameter file is very useful when we want to change a value
inside the code but you do not want to recompile the code. It is used
in much the same way as with the former FARGO code. Yet in that code,
parameters were defined in a rather manual way, in a file called
var.c. With FARGO3D we do not have to edit this file. Rather, we
provide in the SETUP sub directory a template parameter file that has
same name as the setup plus the .par extension. From this file, a
Python script will automagically draw a list of all global variables
and guess their type, and will make a var.c accordingly, in a
manner transparent to the user. At run time the user is free to run the
code either with this .par file, or any other .par file in another
directory, without rebuilt.

There are a set of minimal requirement in a .par file, related with
the mesh size, and output parameters. We will start with the basic
parameters:

We edit the new file myblob.par:

$: touch myblob.par

and write inside something similar to:

Setup myblob

Nx 400
Ny 100
Xmin -2.0
Xmax 2.0
Ymin -0.5
Ymax 0.5

Ntot 1000
Ninterm 1
DT 0.05
OutputDir outputs/myblob

Warning

Because a Python script will automagically create a var.c file
(similar to that of the former FARGO code) out of this newly
created parameter file, we must help the script to guess correctly
the type of each variable. For instance, if we write “Xmin -2”
instead of “Xmin -2.0”, it will wrongly deduce that Xmin is an
integer, not a floating point value, with highly unpleasant
consequences at run time. Similarly, the figure “-0.5” is correctly
recognized by the script, but “-.5” would not be.

Now, we will define the parameters specific to our setup. They are:

gamma 1.666667
rho21 10.0
mach 2.7
rblob 0.15
xblob -1.0
yblob 0.0

where gamma is the adiabatic index, rho21 is the quotient between the
density in the circle (2) and outside (1), and the same for the
temperature; rblob is the radius of the initial blob, normalized by
the vertical size of the box; [xy]blob is the initial position of the
blob.

The observant reader will notice that gamma is already defined in
std/stdpar.par, with the same value. Since both sets of parameters
are used (those of std/stdpar.par and those of
setups/myblob/myblob.par), the first line in the block above is
actually redundant and could have been omitted.

.opt file.

Our setup is 2D, and we want to use the energy equation. In the code’s
jargon, we refer to this as an adiabatic situation. We work in Cartesian coordinates:

$: emacs myblob.opt

The minimal .opt file should be similar to:

FARGO_OPT += -DX
FARGO_OPT += -DY
FARGO_OPT += -DADIABATIC
FARGO_OPT += -DCARTESIAN
ifeq (${GPU}, 1)
FARGO_OPT += -DBLOCK_X=16
FARGO_OPT += -DBLOCK_Y=16
FARGO_OPT += -DBLOCK_Z=1
endif

If you want to use simple precision, you can set:

FARGO_OPT += -DFLOAT

Initial state:

Now we must fill all the primitive fields with the initial conditions. The standard method is as follow, step by step:

	Make a file called condinit.c inside your setup directory. (setups/myblob/condinit.c).

	At the top of this file include the fargo3d.h header.

	Define a function called CondInit() that returns a void.

	Fill the Field_variable->field_cpu with the data, for each field of
the problem.

step by step

	Start by opening the new file for initial conditions:

$: emacs condinit.c

	In the top line include FARGO3D’s header file:

#include "fargo3d.h"

	Subsequently add lines similar to these lines:

void CondInit() {

}

	Write inside the function something similar to:

int i,j,k;

real* rho = Density->field_cpu;
real* vx = Vx->field_cpu;
real* vy = Vy->field_cpu;
real* e = Energy->field_cpu;

i = j = k = 0;

for (k = 0; k<Nz+2*NGHZ; k++) {
 for (j = 0; j<Ny+2*NGHY; j++) {
 for (i = 0; i<Nx; i++) {

 The fields are filled here with the help of the "l" index.

 }
 }
}

This is the basic structure of a routine that works on
fields. Note the pointers and the triple-nested loop. For filling
the fields, we will use the helper index “l”. In this case, the
outer loop is not necessary, but when Z is not defined, by default
NGHZ = 0 and Nz = 1, so there is only one external loop
cycle. Also, in this particular case, we need to define a circle,
and the size of the circle should be resolution-independent, so we
will need to normalize it. We could add the following macrocommand
lines above the initialization of the indices i,j,k

#define Q1 (xmed(i) - XBLOB)
#define Q2 (ymed(j) - YBLOB)

(Remember, all the upper variables are taken from the .par file.)

Now, inside the innermost loop, we will fill the field. First, we
need a condition about where the blob is:

if(sqrt(Q1*Q1+Q2*Q2) < RBLOB/(YMAX-YMIN)) {

}

And inside these curly brackets, for example, the density must to
be RHO21 times denser than the density outside. The inner loop
should be similar to:

rho[l] = 1.0; // Constant value outside
e[l] = 1.0/(GAMMA-1.0); // The isothermal soundspeed is equal to 1.0.
vx[l] = sqrt(e[l]*(GAMMA-1.0))*MACH;
vy[l] = 0.0;

if(sqrt(Q1*Q1+Q2*Q2) < RBLOB/(YMAX-YMIN)) {
 rho[l] *= RHO21;
 vx[l] = 0.0;
}

A complete view of the file condinit.c is:

#include "fargo3d.h"

void CondInit() {

 int i,j,k;

 real* rho = Density->field_cpu;
 real* vx = Vx->field_cpu;
 real* vy = Vy->field_cpu;
 real* e = Energy->field_cpu;

 #define Q1 (xmed(i) - XBLOB)
 #define Q2 (ymed(j) - YBLOB)

 i = j = k = 0;

 for (k = 0; k<Nz+2*NGHZ; k++) {
 for (j = 0; j<Ny+2*NGHY; j++) {
 for (i = 0; i<Nx; i++) {

 rho[l] = 1.0; // Constant value outside
 e[l] = 1.0/(GAMMA-1.0); // The isothermal soundspeed is equal to 1.0.
 vx[l] = sqrt(e[l]*(GAMMA-1.0))*MACH;
 vy[l] = 0.0;

 if(sqrt(Q1*Q1+Q2*Q2) < RBLOB/(YMAX-YMIN)) {
 rho[l] *= RHO21;
 vx[l] = 0.0;
 }
 }
 }
 }
}

Making the executable:

We are now ready to build the code:

$: make SETUP=myblob view

You may skip the final rule “view” if the build process fails (you
need to install Python’s matplotlib for it to work).

If everything goes fine, you should see a message similar to:

 All objects are OK. Linking stage

 FARGO3D SUMMARY:
 ===============

 This built is SEQUENTIAL. Use "make para" to change that

 This built has a graphical output,
 which uses the python's matplotlib library.
 Use "make noview" to change that.

 SETUP: 'myblob'
 (Use "make SETUP=[valid_setup_string]" to change set up)
 (Use "make list" to see the list of setups implemented)
 (Use "make info" to see the current sticky build options)

And finally, we can execute the test:

	$: ./fargo3d -m setups/myblob/myblob.par

If you want to change the boundaries, you must modify myblob.bound
and recompile the code (make again).

Plotting your new setup:

If you have ipython+pylab working, plotting your new setup is very
easy (see the first run section).

	$: ipython –pylab

	In [1]: rho = fromfile(“outputs/myblob/gasdens10.dat”,dtype=’float32’).reshape(100,400)

	In [2]: imshow(rho)

[image: _images/myblob.png]
myblob setup at output number 10 (ie at date = OUTPUTNB * NINTERM * DT
= 0.5 here)

Run-time visualization.

FARGO3D has a visualization module, that can be activated for a
specific setup by doing:

$:make SETUP=setup view

or the equivalent form:

$:make SETUP=setup FARGO_DISPLAY=MATPLOTLIB

In order to use it you need to have a python-development package (if you are using some package-manager) or simply a basic python installation (the file python.h is needed at compilation time). Also, it is mandatory to have installed matplotlib and numpy packages.

How does it work?

Run-time visualization uses an embedded Python interpreter running at
the same time as your simulation. All the related routines are in
src/matplotlib.c. The scheme developed to visualize data allows you
to make a visualization routine adapted to your needs. If you work
with matplotlib, you will see that making an interactive plot from within FARGO3D
is the same as working in an interactive session of python+matplotlib. By
default there are three main routines, called plot1d(), plot2d() and
plot3d(). The functionality of each one is obvious from the name. The
most important line for the run-time visualization is:

Py_InitializeEx(1);

Upon execution of this function, you are able to execute any python command inside FARGO3D. A helper function was developed for passing values from FARGO3D to the python interpreter:

void pyrun(const char *, ...);

The pyrun() function works identically to printf() (man 3
printf), but pyrun() returns a void. The main difference
between printf() and pyrun() is that pyrun() prints on the python
interpreter, and the text printed is interpreted as a python
command. In the background, pyrun is only a wrapper to the function
PyRun_SimpleString().

In the basic public implementation of the run-time visualization, a set
of helper parameters have been implemented. These parameters should be
included in your .par files. You can see the standard value of each
one in std/stdpar.par:

	Field: Name of the field you want to plot. Eg: gasdens

	Cmap: A matplotlib palette. Eg: cubehelix (related to cmap matplotlib karg)

	Log: If you want to use a logarithmic scale for your color map. Values: Yes/No

	Colorbar: If you want to see the colorbar. Values Yes/No

	Autocolor: If you want a dynamic colorbar between the min and max of the field. Values: Yes/No

	Aspect: The same as the aspect karg of matplotlib (imshow() method). Values: Auto, None

	vmin: Min value for the colorbar. Only if Autocolor is No

	vmax: Max value for the colorbar. Only if Autocolor is No

	PlotLine: Allows to make an arbitrary plot when your simulation is 3D. The field is stored in a 3D numpy array called field. For example, if you want to plot the 2D Z-sum projection, you should do something similar to:

PlotLine np.sum(field,axis=0)

Also, you can make a z-slice doing something similar to:

PlotLine field[k,:,:]

where k is an integer with 0<k<NZ.

Backends

Matplotlib uses the concept of backend to refer to some specific set
of widgets used for rendering the plot (eg: qt, tkinter, wx,
etc). This is very important for us because not all the backends (at
least for now) are compatible with interactive non-blocking plots. If
the main widget that appears after the execution of FARGO3D does not
work for you, you can try with another backend. (More details can be
found in the matplotlib official documentation). There is a file in
the main directory of FARGO3D, called matplotibrc that contains all
the useful configurations related with matplotlib that will be used at
run-time. This file is matplotlib-standard, and is
version-dependent. If you want to modify the aspect of the widget, or
change the backend, it is a good idea to start modifying this file. We
work on a daily basis with the backend TKAgg.

If you want to use the default matplotlibrc configured in your
environment instead of the one we provide, it should be enough to
rename the matplotlibrc file provided with FARGO3D with any
arbitrary name.

Outputs

FARGO3D has many different kinds of outputs, each one with different
information. They are:

	Scalar fields.

	Summary files.

	Domain files.

	Variables file.

	Grid files.

	Legacy file.

	Planetary files.

	Monitoring files.

This section is devoted to a brief explanation of each kind of files

Scalar fields

These files have a .dat extension. They are unformatted binary
files. The structure of each file is a sequence of doubles (8 bytes),
or floats (4 bytes) if the FLOAT option was activated at build time
(see the section .opt files). The number of bytes stored in a field
file is:

	\(8 \times N_x\times N_y\times N_z\)

	\(4\times N_x\times N_y\times N_z\) if the option FLOAT was
activated.

Remember that \(N_x\), \(N_y\), \(N_z\) are the global
variables “NX NY NZ” defined in the .par file (the size of the mesh).

For a correct reading of the file, you must be careful with the order
of the data. The figure below shows how the data is stored in each
file (for 2D simulations, but the concept is the same in 3D).

[image: _images/output.png]

The fast (“innermost”) index is always the x-index (index i inside the
code). The next index is the y-index (j) and the last one is the
z-index (k). If one direction is not used (eg: 2D YZ simulation), the
indices used follow the same rule. Note that scalar fields files do
not contain information about coordinates. It is only a cube of data,
without any additional information. The coordinates of each cell are
stored in additional files, called domain_[xyz].dat (see the section
below).

When you use MPI, the situation becomes more complex, because each
processor writes its piece of mesh. If you want to merge the files
manually, you need the information of the grid files, detailed
below. In practice, all the runs are done with the run time flag
-m (merge), in order to avoiding the need for a manual merge. If
your cluster does not have a global storage, you have to do the merge
manually after having copied all files to a common directory.

The fields may be written with a different output format, called
VTK-format. This format is a little bit more complicated and is
discussed in the VTK section.

Here you have some minimalist reading examples with different tools
(additional material can be found in the First Steps section and in
the utils/ directory):

c:

FILE *fi;
double f[nx*ny*nz];
fi = fopen(filename, "r");
fread(f,sizeof(double), nx*ny*nz, fi);
fclose(f);

python:

from pylab import *
rho = fromfile("gasdens120.dat").reshape(nz,ny,nx)x

GDL or IDL:

GDL> openr, 10, 'gasdens10.dat'
GDL> rho = dblarr(nx,ny)
GDL> readu, 10, rho
GDL> close, 10

fortran:

real*8 :: data(nx*ny*nz)
open(unit=100, status="old", file=filename, &
& form="unformatted", access="direct", recl = NX*NY*NZ*8)
read(100,rec=1) data

gnuplot:

plot filename binary format="%lf" array=(nx,ny) w image

Summary files

Every time FARGO3D outputs coarse grain scalar fields, a
summary[i].dat file is written to the output directory (where
[i] stands for the output number). This file contains the
following information:

	A section indicating the setup, the code version, the mesh size and
geometry, the number of outputs scheduled, the number of planets (if
any), and (if the sticky flag LONGSUMMARY is defined) the
filename of the source tar file. The latter is made at build time
and consists exclusively of the sources found in the VPATH used for
the build. This archive is copied to the output directory upon the
run start. Its naming convention is sources[n].tar.bz2, where
[n] is the smallest integer for which no such file name exists
in the directory. Therefore, upon a fresh start in a new directory,
the archive name will be sources0.tar.bz2. If a restart is
issued, the subsequent archive file will be sources1.tar.bz2 so
as to not overwrite the previous source archive (the source may have
changed between the initial run and the restart). The source archive
may be expanded using the command tar jxvf source[n].tar.bz2,
and it expands in a subdirectory arch/.

	A section giving the full set of compilation options of the code.

	A section giving the list of the sticky build flags (only if the
sticky flag LONGSUMMARY is defined).

	A section giving runtime information such as the directory from which
the run was launched, the command line used, the parameter file, the
number of processes and the host names, together with the
corresponding rank (and device number for GPU builts).

	A section indicating the time at which the output is performed.

	A section indicating the different preprocessor macros known to the
code.

	A section listing all the parameters known to the code, in
alphabetical order. This includes not only those declared in the
parameter file, but also those which do not appear in that file and
have a default value.

	A section giving the full content of the parameter file. This
section should in most cases be redundant with the previous section,
but the value of some parameters may evolve during execution.

	A section containing the boundary conditions used in the build (only
if the sticky flag LONGSUMMARY is defined).

	For the runs which involve at least one planet, a section listing
the 3 components of each planet position and velocity, as well as
its mass, and a copy of the planetary system configuration file.

Note

In order to keep the source archive and executable in sync, we
append trailing information directly to the executable binary file
(namely, among others, a tar file of the source), at build time
(only if LONGSUMMARY is defined). Copying the source files to
the output directory to keep a track of the code used to generate a
given data could be misleading if the user edits the source but
does not recompile the code. Our method is therefore more robust,
but more involved. It works fine on a variety of
platforms. However, it requires opening the executable file itself
as an input stream during execution. This requires that the OS
allows this type of operation, and that the correct full path to the
executable is properly retrieved at run time. If you get the message:

Attempting to use an MPI routine before initializing MPI
Cannot open executable file to retrieve information appended.

you should check the value of the variables
CurrentWorkingDirectory and FirstCommand in
src/summary.c, and fix them accordingly. In order to avoid
potential problems, by default we have deactivated all logging
which requires interfering manually with the executable (namely
logging the source tar archive, the sticky flags used at build time
and the set of boundary conditions). If you want to log this
information, you must build FARGO3D with the sticky flag
LONGSUMMARY=1. Since the possibility of having long summaries
is essentially platform dependent (rather than setup dependent),
you may want to change the default behavior by editing the file
std/defaultflags.

Note

Even if the sticky flag LONGSUMMARY is not activated, a
subdirectory named arch/ is produced in FARGO3D’s main
directory, which contains all the source effectively used to build the
code. This includes all the boundary conditions C files derived from
the setup, the CUDA files in case of a GPU build, etc. This directory
can be copied for your records to the output directory by your batch
scheduler.

Domain files

Another important piece of output is the domain files:

	domain_x.dat

	domain_y.dat

	domain_z.dat

These three files are created after any run, except if they existed in
the output directory before running your simulation. The content of
these files are the coordinates of the lower face of each cell
([xyz]min inside the code). They can also be considered as the
coordinates of the interfaces between cells. It is important to note
that domain_[yz].dat are written with the ghost cells. The
format is ASCII, and the total number of lines is:

	domain_x.dat: Nx lines

	domain_y.dat: Ny+2NGHY lines

	domain_z.dat: Nz+2NGHZ lines

where NGHY=NGHZ=3 by default. The active mesh starts at line 4 and has
Ny+1/Nz+1 lines (up to the upper boundary of the active mesh).

If you want to use a logarithmic spacing of the domain, you could set
the parameter Spacing to log (see the section “Default
parameters”). If you include in the output directory files with the
name domain_[xyz].dat, their content will be read, which enables
you to handcraft any kind of non-constant zone size.

Variables

When you run the code, two files called variables.par and
IDL.var are created inside the output directory. These files are
ASCII files containing the same information in two different formats:
the name of all parameters and their corresponding values. IDL.var is
properly formatted to simplifying the reading process in an IDL/GDL
script:

IDL> @IDL.var
IDL> print, input_par.nx
 384
IDL> print,input_par.xmax
 3.14159

The standard .par format is used in
variables.par. It may be used again as the input parameter file of
FARGO3D, should you have erased the original parameter file.

Grid files

One grid file is created per processor. Inside each file, there is
information stored about the submesh relative to each processor.
The current format is on 7 columns, with the data:

	CPU_Rank: Index of the cpu.

	Y0: Initial Y index for the submesh.

	YN: Final Y index for the submesh.

	Z0: Initial Z index for the submesh.

	ZN: Final Z index for the submesh.

	IndexY: The Y index of the processor in a 2D mesh of processors.

	IndexZ: The Z index of the processor in a 2D mesh of processors.

For an explanation of the last two items, go to the section about MPI.

Planet files

These files are output whenever a given setup includes a planetary
system (which may consist of one or several planets). This, among
others, is the case of the fargo and p3diso setups. There are
three such files per planet, named planet[i].dat,
bigplanet[i].dat and orbit[i].dat, where i is the planet
number in the planetary system file specified by the parameter
PLANETCONFIG. This number starts at 0. For the vast majority of
runs in which one planet only is considered, three files are therefore
output: planet0.dat, bigplanet0.dat, and orbit0.dat. The
last two files correspond to fine grain sampling (that is, they are
updated every DT, see also Monitoring). In contrast,
planet[i].dat is updated at each coarse grain output (every time
the 3D arrays are dumped), for restart purposes. This file is
essentially a subset of bigplanet[i].dat.

At each update, a new line is appended to each of these files. In the
file bigplanet[i].dat, a line contains the 10 following columns:

	An integer which corresponds to the current output number.

	The x coordinate of the planet.

	The y coordinate of the planet.

	The z coordinate of the planet.

	The x component of the planet velocity.

	The y component of the planet velocity.

	The z component of the planet velocity.

	The mass of the planet.

	The date.

	The instantaneous rotation rate of the frame.

In the file orbit[i].dat, a line contains the 10 following
columns:

	the date \(t\),

	the eccentricity \(e\),

	the semi-major axis \(a\),

	the mean anomaly \(M\) (in radians),

	the true anomaly \(V\) (in radians),

	the argument of periastron \(\psi\) (in radians, measured
from the ascending node),

	the angle \(\varphi\) between the actual and initial
position of the x axis (in radians; useful to keep track of
how much a rotating frame, in particular with varying rotation
rate, has rotated in total).

	The inclination \(i\) of the orbit (in radians),

	the longitude \(\omega\) of the ascending node (with
respect to the actual x axis),

	the position angle \(\alpha\) of perihelion (the angle of
the projection of perihelion onto the x-y plane, with
respect to the -actual- x axis)

Note that in the limit of vanishing inclination, we have

\[\alpha \approx \omega+\psi\]

The information of column 7 is very useful to determine precession
rates, whenever the frame is non-inertial. For instance, the precession
rate of the line of nodes is given by \(d(\varphi+\omega)/dt\).

Note

The file(s) planet[i].dat are emptied every time a new
run is started. This is because these files are needed for a
restart, so we want to avoid that out of date, incorrect
information be used upon the restart. In contrast, lines accumulate
in the files orbit[i].dat and bigplanet[i].dat until those
(or the directory containing them) are manually suppressed.

Datacubes

All primitive variables (density, velocity components, internal energy
density (or sound speed for isothermal setups), and magnetic field
components (for MHD setups) are written every NINTERM steps of
length DT (each of those being sliced in as many timesteps as
required by the CFL condition). In addition, some selected arrays can
be written every NSNAP steps of length DT. These arrays names
are controlled by the boolean parameters WriteDensity,
WriteEnergy, WriteVx, WriteVy, WriteVz, WriteBx,
WriteBy, WriteBz. These allow the user either to oversample
one of these fields (e.g. for an animation), or to dump to the disk
only some variables (by setting NINTERM to a very large value and
using NSNAP instead). Files created through the NSNAP
mechanism obey the same numbering convention as those normally
written. In order to avoid conflicts in filenames, the files created
through NSNAP are written in the subdirectory snaps in the
output directory.

Besides, the runtime graphical representation with matplotlib is
performed using the files created in the snaps directory.

Monitoring

Introduction

FARGO3D, much as its predecessor FARGO, has two kinds of outputs:
coarse grain outputs, in which the data cubes of primitive variables
are dumped to the disk, and fine grain outputs, in which a variety of
other (usually lightweight) data is written to the disk. As their
names indicate, fine grain outputs are more frequent than coarse grain
outputs. Note that a coarse grain output is required to restart a
run. In this manual we refer to the fine grain output as monitoring.
The time interval between two fine grain outputs is given by the real
parameter DT. This time interval is sliced in as many smaller
intervals as required to fulfill the Courant (or CFL)
condition. Note that the last sub-interval may be smaller than what is
allowed by the CFL condition, so that the time difference between two
fine grain outputs is exactly DT. As for its predecessor FARGO,
NINTERM fine grain outputs are performed for each coarse grain output,
where NINTERM is an integer parameter. Fine grain outputs or
monitoring may be used to get the torque onto a planet with a high
temporal resolution, or it may be used to get the evolution of
Maxwell’s or Reynolds’ stress tensor, or it may be used to monitor the
total mass, momentum or energy of the system as a function of time,
etc. The design of the monitoring functions in FARGO3D is such that a
lot of flexibility is offered, and the user can in no time write new
functions to monitor the data of his choice. The monitoring functions
provided with the distribution can run on the GPU, and it is extremely
easy to implement a new monitoring function that will run
straightforwardly on the GPU, using the functions already provided as
templates.

Flavors of monitoring

The monitoring of a quantity can be done in several flavors:

	scalar monitoring, in which the sum (or average) of the quantity over
the whole computational domain is performed. The corresponding
output is a unique, two-column file, the left column being the date
and the right column being the integrated or averaged scalar. A new
line is appended to this file at each fine grain output.

	1D monitoring, either in Y (i.e. radius in cylindrical or
spherical coordinates) or Z (i.e. colatitude in spherical
coordinates). In this case, the integral or average is done over the
two other dimensions only, so as to get, respectively, radial or
vertical profiles in each output. Besides, the 1D monitoring comes
itself in two flavors:

	a raw format, for which a unique file is written, in which a row
of bytes is appended at every fine grain output. This file can be
readily used for instance with IDL (using openr & readu
commands) or Python (using numpy’s fromfile command). For
example, this allows to plot a map of the vertically and
azimuthally averaged Maxwell’s tensor, as a function of time and
radius. This map allows to estimate when the turbulence has
reached a saturated state at all radii. In another vein, one can
imagine a map of the azimuthally and radially averaged torque,
which provides the averaged torque dependence on time and on z.

	a formatted output. In this case a new file is written at each
fine grain output. It is a two-column file, in which the first
column represents the Y or Z value, as appropriate, and the
second column the integrated or averaged value. The simultaneous
use of both formats is of course redundant. They have been
implemented for the user’s convenience.

	2D monitoring. In this case the integral (or averaging) is
performed exclusively in X (or azimuth),so that 2D maps in Y and Z
of the quantity are produced. In this case, a new file in raw
format is written at each fine grain output.

Monitoring a quantity

Thus far in this section we have vaguely used the expression “the
quantity”. What is the quantity and how is it evaluated?

The quantity is any scalar value, which is stored in a dedicated 3D
array. It is the user’s responsibility to determine an adequate
expression for the quantity, and to write a routine that fills, for
each zone, the array with the corresponding quantity. For instance, if
one is interested in monitoring the mass of the system, the quantity
of interest is the product of the density in a zone by the volume of
the zone. The reader may have a look at the C file
mon_dens.c. Toward the end of that file, note how the interm[]
array is precisely filled with this value. This array will further be
integrated in X, and, depending on what has been requested by the
user, possibly in Y and/or Z, as explained above. Note that the same
function is used for the three flavors of monitoring (scalar, 1D
profiles and 2D maps).

Monitoring in practice

We now know the principles of monitoring: it simply consists in having
a C function that evaluates some quantity of interest for each
cell. No manual averaging or integration is required if you program
your custom function. But how do we request the monitoring of given
quantities, what are the names of the corresponding files, and how do
we include new monitoring functions to the code ? We start by
answering the first question.

The monitoring (quantities and flavors) is requested at build time,
through the .opt file. There, you can define up to 6 variables, which
are respectively:

	MONITOR_SCALAR

	MONITOR_Y

	MONITOR_Y_RAW

	MONITOR_Z

	MONITOR_Z_RAW

	MONITOR_2D

Each of these variables is a bitwise OR of the different quantities of
interest that are defined in define.h around line 100. These
variables are labeled with a short, self-explanatory, uppercase
preprocessor variable.

For instance, assume that you want to monitor the total mass (scalar
monitoring) and total angular momentum (also scalar monitoring), that
you want to have a formatted output of the radial torque density, plus
a 2D map of the azimuthally averaged angular momentum. You would have
to write in your .opt file the following lines:

MONITOR_SCALAR = MASS | MOM_X
MONITOR_Y = TORQ
MONITOR_2D = MOM_X

Note the pipe symbol | on the first line, which stands for the
bitwise OR. It can be thought of as “switching on” simultaneously
several bits in the binary representation of MONITOR_SCALAR, which
triggers the corresponding request for each bit set to one. The
condition for that, naturally, is that the different variables defined
around line 100 in define.h are in geometric progression with a
factor of 2: each of them corresponds to a given specific bit set to
one. In our example we therefore activate the scalar monitoring of the
mass and of the angular momentum (we will check in a minute that
MOM_X corresponds to the angular momentum in cylindrical and
spherical coordinates). This example also shows that a given variable
may be used simultaneously for different flavors of monitoring:
MOM_X (the angular momentum) is used both for scalar monitoring
and 2D maps.

The answer to the second question above (file naming conventions) is
as follows:

	Unique files are written directly in the output directory. Their
name has a radix which indicates which quantity is monitored
(e.g. mass, momx, etc.), then a suffix which indicates
the kind of integration or averaging performed (_1d_Z_raw or
_1d_Y_raw, or nothing for scalar monitoring) and the extension
.dat.

	Monitoring flavors that require new files at each fine grain output
do not write the files directly in the output directory, in order
not to clutter this directory. Instead, they are written in
subdirectories which are named FG000..., like “Fine Grain”,
plus the number of the current coarse grain output, with a zero
padding on the left. In these directories, the files are written
following similar conventions as above, plus a unique (zero padded)
fine grain output number. It is a good idea to have a look at one
of the outputs of the public distribution (choose a setup that
requests some monitoring, by looking at its .opt file), in
order to understand in depth these file naming conventions.

	Some monitoring functions depend on the planet (such as the
torque). In this case, the code performs automatically a loop on
the different planets and the corresponding file name has a suffix
which indicates in a self-explanatory manner the planet it
corresponds to.

How to register a monitoring function

You may now stop reading if you are not interested in implementing
your own monitoring functions, and simply want to use the ones
provided in the public distribution.

However, if you want to design custom monitoring functions for your
own needs, let us explain how you include such functions to the
code. Let us recall that a monitoring function is a function that
fills a dedicated 3D arrays with some value of interest, left to the
user. This function has no argument and must return a void. Have a
look at the the file mon_dens.c and the function void
mon_dens_cpu() defined in it. Note that the temporary array
dedicated to the storage of the monitoring variable is the Slope
array. As we enter the monitoring stage after a (M)HD time step, the
Slope array is no longer used and we may use it as a temporary
storage. Any custom monitoring function will have to use the
Slope array to store the monitoring variable.

The monitoring function is then registered in the function
InitMonitoring() in the file monitor.c. There, we call a
number of times the function InitFunctionMonitoring () to register
successively all the monitoring functions defined in the code.

	The first argument is the integer (power of two) that is associated
to the function, and which we use to request monitoring at build
time in the .opt file.

	The second argument is the function name itself (the observant
reader will notice that this is not exactly true: in mon_dens.c
the function is mon_dens_cpu(), whereas in InitMonitoring()
we have:

InitFunctionMonitoring (MASS, mon_dens, "mass",...

instead of:

InitFunctionMonitoring (MASS, mon_dens_cpu, "mass",...

The reason for that is that mon_dens is a function pointer itself,
that points to mon_dens_cpu() or to mon_dens_gpu(), depending
of whether the monitoring runs on the CPU or the GPU).

	The third argument is a string which constitutes the radix of the
corresponding output file.

	The fourth argument is either TOTAL or AVERAGE (self-explanatory).

	The fifth argument is a 4-character string which specifies the
centering of the quantity in Y and Z. The first and third
characters are always respectively Y and Z, and the second and
fourth characters are either S (staggered) or C (centered). This
string is used to provide the correct values of Y or Z in the
formatted 1D profiles. For instance, the zone mass determined in
mom_dens.c is obviously centered both in Y and Z.

	The sixth and last argument indicates whether the monitoring
function depends on the coordinates of the planet (DEP_PLANET) or
not (INDEP_PLANET). In the distribution provided only the torq
function depends on the planet.

The call of the InitFunctionMonitoring() therefore associates a
variable such as MASS or MAXWELL to a given function. It
specifies the radix of the file name to be used, and gives further
details about how to evaluate the monitored value (loop on the
planets, integration versus averaging, etc.) We may now check that
requesting MOM_X in any of the six variables of the .opt file
does indeed allow a monitoring of the angular momentum. We see in
InitMonitoring() that the MOM_X variable is associated to
mon_momx(). The latter is defined in the file mon_momx.c where
we can see that in cylindrical or spherical coordinates the quantity
evaluated is the linear azimuthal velocity in a non-rotating frame,
multiplied by the cylindrical radius and by the density.

Implementing custom monitoring: a primer

In this distribution, we adhere to the convention that monitoring
functions are defined in files that begin with mon_. If you define
your own monitoring function and you want it to run indistinctly on
the CPU or on the GPU, you want to define in the mon_foo.c file
the function:

void mon_foo_cpu ()

then in global.h you define a function pointer:

void (*mon_foo)();

In change_arch.c this pointer points either to the CPU function:

mon_foo = mon_foo_cpu;

or to the GPU function:

mon_foo = mon_foo_gpu;

depending on whether you want the monitoring to run on the CPU or the
GPU. Finally, the syntax of the mon_foo.c file must obey the
syntax described elsewhere in this manual so that its content be
properly parsed into a CUDA kernel and its associated wrapper, and the
object files mon_foo.o and mon_foo_gpu.o must be added
respectively to the variables MAINOBJ and GPU_OBJBLOCKS of the
makefile. A good starting point to implement your new
mon_foo_cpu() function is to use mon_dens.c as a template.

Both the _cpu() and _gpu() functions need to be declared in
prototypes.h:

ex void mon_foo_cpu(void);

in the section dedicated to the declaration of CPU prototypes, and:

ex void mon_foo_gpu(void);

in the section dedicated to the declaration of GPU prototypes. Be sure
that the declaration is not at the same place in the file. The second
one must be after the #ifndef __NOPROTO statement

In order to be used, you new monitoring function needs to be
registered inside the function InitMonitoring () of the file
monitor.c, using a syntax as follows:

InitFunctionMonitoring (FOO, mon_foo, "foo", TOTAL, "YCZC", INDEP_PLANET);

or similar, as described above. In this sentence, FOO is an
integer power of 2 that must be defined in define.h. Be sure that
it is unique so that it does not interfere with any other predefined
monitoring variable. You are now able to request a fine grain output
of your ‘’foo’’ variable, using in the .opt file expressions such
as:

MONITOR_SCALAR = MASS | FOO | MOM_Z
MONITOR_2D = BXFLUX | FOO

Communications

Mono-GPU runs (with CUDA, multi-CPU runs (with MPI) and obviously
multi-GPU runs (with MPI+CUDA) all need some kind of communications.

When we run a SETUP on a GPU, the GPU sometimes needs to exchange
information with the host (CPU). It is therefore important to give
some information about this kind of transactions.

On the other hand, when we run a CPU-parallel version of the code,
each processor must communicate information about its contour cells
with neighboring processors, which involves MPI communications.

Finally, when we run a mixed version (ie: GPU-parallel, on a cluster
of GPUs), both processes are combined, and communications

device<—>host (CPU)

happen, as well as communications:

CPU<—through MPI—>CPU

Traditionally, GPU to GPU communication would imply a three-part trip:
the information is downloaded from the GPU to its corresponding CPU
(process), then sent to a neighbor, and finally uploaded to the GPU of
that neighbor.

Recent CUDA implementations permit however to issue MPI communication
statements using pointers on board the GPUs. The information then
travels using the fastest way, in a manner totally transparent to the
user. FARGO3D handles this case, which is activated with the make
option “mpicuda” (make mpicuda or make MPICUDA=1). If you want
to get the best performance of FARGO3D on your GPU cluster, it is
mandatory to use the mpicuda option.

We present in some detail all these kinds of communications hereafter.

GPU/CPU communications

First to all, assume we run the code in sequential mode on one GPU.
Naturally, routines that run on the GPU must have at their disposal
data in the Video RAM (device’s global memory in GPU’s jargon),
whereas routines that run on the CPU must have at their disposal data
on the normal RAM (host memory). When the data is updated on, say, the
GPU, it is not updated automatically on the CPU, nor vice-versa.

Managing manually data transfer between CPU and GPU (host and device)
is a programmer’s nightmare. It is extremely error-prone, and proves
to be impractical for a code of the complexity of FARGO3D. The GFARGO
code, which has a simpler structure, has been developed using manual
data transfers from GPU to CPU and vice-versa, and it took a very long
time to get the data transfers right.

In order to understand how data transfer is dealt with in a
semi-automatic way in FARGO3D, let us examine a real-life example. In
what follows, a green rectangle means that the data is correct and up
to date, whereas a red rectangle corresponds to random or out-of-date
data.

We start by initializing a data field (say Vx), on the CPU (there
is absolutely no reason to try and initialize them directly on the
GPU: this would add a lot of complexity and it would be pointless).

We have therefore the following situation:

[image: _images/struct_init.png]

Before starting a (M)HD time step on the GPU, we need to upload the
data to it. This is done by a “host to device” communication (H2D)
which occurs through the PCI bus:

[image: _images/struct_H2D.png]

The run can start on the GPU. Only the data on board the GPU is then
up to date, while the data on the CPU is left untouched and
corresponds to the initial condition:

[image: _images/struct_runGPU.png]

At some point, we need to get the data back on the CPU (for instance
to dump it to an output file, or because we have written a new routine
that uses it and which we have not developed to run on the GPU). We
need to perform a communication through the PCI bus from the device to
the host (D2H), this time:

[image: _images/struct_D2H.png]

A simple example could be:

Suppose we are in the first time step of a run, and we want to compute
the pressure field on the GPU (\(P=c_s^2\rho\)), but we have set
the initial conditions on the CPU. We need to upload the sound speed
and density fields. We do not upload all fields. This would be
extremely time-consuming. We only upload what is needed and nothing
else.

In order for that to be achieved semi-automatically, we have defined
two macrocommands that are called INPUT and OUTPUT. What these
macrocommands do is that they update the “color” (red or green) of a
field on the GPU or CPU, so that we know whether it is up to date or
not, and they transfer the data to the place where the calculation is
going to proceed, if it turns out to be out of date at the beginning
of a routine. For instance, consider the following piece of code:

ComputePressure () {
 INPUT (SoundSpeed);
 INPUT (Density);
 OUTPUT (Pressure);

 main loop:
 pressure[l] = density[l]*soundspeed[l]*soundspeed[l];
 }

The macrocommands INPUT and OUTPUT expand differently on the
CPU and on the GPU (to be more accurate in C functions and in CUDA
kernels). On the CPU, INPUT checks the “color” (red or green) of
its argument field on the CPU, and if it is red, it requires a
communication “device to host” of this specific field. This ensures
automatically that the field we process on the CPU is up to date when
we enter the routine’s main loop. Similarly, on the CPU, OUTPUT
sets to “green” the state of its argument field on the CPU, and to
“red” its state on the GPU.

On the GPU, the macrocommands expand in the opposite way. We leave as
an exercise to the reader to check that one can exchange in the above
paragraph the words CPU and GPU, device and host.

Note

Implementation-wise, we do not truly define a color for CPU
and GPU. Rather, each Field has two boolean flags, named
fresh_cpu and fresh_gpu. If fresh_cpu is YES, it means
that the data on the CPU is up to date (“green state” in the above
explanation), and out of date otherwise (“red state”). Similar
rules apply for fresh_gpu. One should never set, nor even see
directly these flags. All of this is taken care of by INPUT and
OUTPUT.

	Take away message: you should only care to properly state, at the

	beginning of each routine, which fields are INPUT and which
fields are OUTPUT. That’s all. This should be done rigorously as
you start to write the routine. If you forget to do it, the code will
throw wrong results when run on a GPU built. If you do it correctly,
you will never have to worry about CPU/GPU communications, which will
take place automatically for you behind the scene. This is easy to
do, intuitive, but it must be done rigorously.

All the details can be found in src/fresh.c file. We have actually
developed several kinds of INPUT/OUTPUT macrocommands, for each
type of field encountered in the code: Field (volumic data), Field2D
(X-averaged, ie azimuthally averaged data 2D real data), and
FieldInt2D (2D fields of integers). The latter is used in particular
for the shifts needed by the azimuthal advection:

INPUT(Field)
INPUT2D(Field2D)
INPUT2DINT(FieldInt2D)
OUTPUT(Field)
OUTPUT2D(Field2D)
OUTPUT2DINT(FieldInt2D)

Under the hood, these methods are only wrappers of the cudaMemcpy()
function.

MPI

When FARGO3D is running in parallel mode, the main computational mesh
must be split into several submeshes, each one corresponding to a
cluster core. All the computation is done independently inside this
submesh (because all the HD/MHD equations are local), but at the
borders of the submeshes some communications must be done with
neighbors in order to merge all problems into a big one.

The mesh is split so as to minimize the surface of contact between the
processors. Following this rule, the size of the communications is
minimal. Note that much like the former FARGO code, the mesh is not
split in the X (azimuthal) direction, because orbital advection is not
local in x. This represents a penalty for communications, because the
“contact surface” between processors is not as small as it could be if
we split the mesh in x as well.

The abscissa and ordinate of each processor in the 2D mesh (Y and Z)
of processors are the global variables I and J. In practice,
with this indices, and with the variables CPU_Rank and CPU_Number, you
have all the information needed to know where each process lies in the
mesh of processes and who the neighbors are.

MPI-CUDA

General considerations

In a mixed CUDA+MPI run, we must have one processing element
(“processor”) per GPU. Normally, when you run CUDA on one GPU only,
the driver selects the device for you automatically, or you may
specify manually which device you want to run on by specifying the
-D flag on the command line. This is obviously not possible here,
as all processes within the same node would run on the same
device. Instead, each process will have to select at run-time, in an
automatic manner, the correct GPU through a directive of the kind:

cudaSetDevice (int device_number);

where device_number must be evaluated depending on the process
rank. Assume that your cluster has a topology similar to this one:

[image: _images/cluster-top.png]

Despite the fact that four processes could fit on each node for
non-GPU runs, here we must limit ourselves to two processes only per
node, otherwise, several processes will use the same GPU, leading to a
degradation of performance. Depending on your MPI implementation, the
rank ordering of processes could then be as follows:

[image: _images/pt1.png]

or the processes could be distributed in a different manner, as shown
below:

[image: _images/pt2.png]

The strategy to calculate the device number would be different in
these two cases. In the first case, we should have a rule like this
one:

device_number = CPU_Rank % number_of_processes_per_node;

where the % operator represents the modulo operation in C. On
the contrary, in the second case, we would need a rule like this one:

device_number = CPU_Rank / number_of_nodes;

where the division is an integer (Euclidean) division.

Naturally, in the first case, the number_of_processes_per_node is
also the number of GPUs per node. We can check that it yields the
desired correspondence:

	Process

	GPU

	0

	0

	1

	1

	2

	0

	3

	1

	4

	0

	5

	1

whereas in the second case the correspondence is as expected:

	Process

	GPU

	0

	0

	1

	0

	2

	0

	3

	1

	4

	1

	5

	1

Prior to writing the rule to select your GPUs on your cluster, you
should determine how your MPI implementation distributes the process
ranks among the nodes (case 1 or 2) by writing a test program such
as:

#include <stdio.h>
#include <mpi.h>

int main (int argc, char *argv[]) {
 int rank;
 char hostname[1024];
 MPI_Init (&argc, &argv);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 gethostname (hostname);
 printf ("I, process of rank %d, run on host %s\n", rank, hostname)
 MPI_Finalize();
}

Implementation of the device selection rule

How do we implement the device selection rule seen above? This should
be done on a platform+MPI version basis (on the same platform, two
different flavors of MPI may behave differently). This is done in the
function SelectDevice (int myrank) in the file
src/select_device.c. You can see that in this function we have a
series of tests on the hostname for which we have implemented some
selection rules. For instance, we have developed FARGO3D among others
on a workstation with two Tesla C2050 cards (hostname tesla), and
for this device, we have the selection rule:

device - 1-(myrank % 2);

which selects device 1 for rank 0 and device 0 for rank 1 (the reason
for swapping the GPUs with respect to normal order is that a run with
1 process only will run on the GPU 1, for which the temperature levels
off at a smaller value than GPU 0 during a long run…).

As you see, you have all the freedom to implement your own rules
within this routine, with tests similar to those already written. It
would be probably better to have tests using an environment variable
or to use #ifdef directives which would use some variable defined
in the platform specific section of the makefile. We might implement
such features in the future.

The device eventually adopted by the process is as follows:

	If an explicit rule is defined for your platform, the device defined
in this rule is adopted.

	If you specify explicitly the device with the -D option on the
command line, the device thus chosen has priority in any case (in
particular it overwrites the device given by your platform rule, if
any).

Note

If your run is MPI and you use option -D, a warning is
issued since all your processes run on the same GPU.

	If no rule is found for your platform and you have not specified any
device on the command line, CUDA chooses the device for you (the
rules for this selection are those of the function
cudaChooseDevice().) DO NOT RELY ON THIS AUTOMATIC SOLUTION to
decide for you in a MPI run. The different processes will see that
device 0 is available when they enter simultaneously the function
select_device() and they will all select this device.

Finally, a message is issued in any case stating the process rank and
the device on which it runs.

CUDA aware MPI implementations

As advertised earlier, recent implementations of CUDA can deal with
direct device-to-device (“GPU to GPU”) MPI communications (so-called
GPU Direct). We shall not consider the details here but the interested
reader could consult the following page [http://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/].

Compiling the code with a CUDA aware version of MPI is relatively
straightforward, but there is one subtlety with which we must
deal. The problem is the following.

In order to setup the CUDA-aware MPI machinery behind the scene, each
process must already have “chosen” its GPU when the code executes
MPI_Init(). However, as we have seen at length above, choosing the
GPU is done on the basis of the rank. But how can a process know its
rank, even before entering MPI_Init() ? In order to avoid this
vicious circle, implementations of MPI provide a mechanism that allows
us to know the rank of the process even before MPI_Init() has been
invoked. This mechanism cannot be a MPI_Something () directive, as
no MPI directive can be called before MPI_Init(). Rather, it
simply consists in reading an environment variable that has a specific
name. There are two such flavors of variables in each MPI
implementation/ For instance, these variables are named
OMPI_COMM_WORLD_RANK and OMPI_COMM_WORLD_LOCAL_RANK in OpenMPI. Each
process can, therefore, get its rank in this manner:

rank = atoi(getenv("OMPI_COMM_WORLD_RANK"));

or its local rank (i.e. within a given node) as follows:

local_rank = atoi(getenv("OMPI_COMM_WORLD_LOCAL_RANK"));

The value returned will be different for each process, which will
allow a selection of the device on this basis, so that MPI_Init()
can be called afterwards. If FARGO3D is compiled with the make flag
MPICUDA, main() will invoke a function called
EarlyDeviceSelection() just after reading the parameter file, and
it will subsequently invoke SelectDevice() with the rank thus
obtained.

Note

Using OMPI_COMM_WORLD_LOCAL_RANK instead of
OMPI_COMM_WORLD_RANK is simpler. The former returns the
rank within a node (hence its name), so that it can directly
select the device number local_rank without further
arithmetic. This is the approach used in FARGO3D when the
build flag MPICUDA is set.

To sum up, if you want to build FARGO3D with a CUDA aware MPI
implementation, you must pass this special environment variable to the
code at build time. This is achieved by defining the variable ENVRANK
in the makefile. You should edit one of the platform specific build
options provided in the makefile and adapt it to your own needs.

Note

how do you know if the code is really running with GPU
Direct ? At run-time on a GPU built, if any communication of
a data cube occurs between the CPU and GPU, a flag is
raised, and a “!” is printed on the terminal instead of
FARGO(3D)’s classic dot. This helps to diagnose that
something is wrong, for instance when a part of a time step
is still running on the CPU (expensive, “volumic” kind of
data transfer are therefore occurring at each time
step). Similarly, if any communication of a data “square”
(ie the boundary of a cube) occurs between the CPU and GPU,
another flag is raised, and a “:” is printed on the
terminal. This happens if MPI communications are done
through the host, instead of being achieved through GPU
Direct: “surfacic” kind of data transfer is necessary
between the host and the device in this case.

To sum up, if you see on the terminal a line such as:

!!!!!!!!!!!!!!!!!!

some part of the time step is still running on the CPU, with a
dramatic impact on performance. If you see:

:::::::::::::::::

then all routines are running on the GPU but MPI communications are
still done through the host, with a sizable performance
penalty. Finally, when you see the customary line of dots, everything
is running on the GPU and MPI communications are achieved through GPU
direct.

Spawning a job on a cluster of GPUs: a primer

	If MPICUDA is not defined:

	
	You can use the flag -D to specify the device number on which

	each GPU job must be launched. This is fine if your cluster has
only one GPU per node and you spawn one PE per node. A warning
message is issued in any case, as specifying manually the device
number should be reserved for sequential runs.

	Alternatively, you can define a rule (e.g. hostname based) for the
device number, on the model of those already written in
src/select_device.c in the function SelectDevice(), which
is the function called when the code is compiled without
MPICUDA.

	if MPICUDA is defined:

	
	You can use the flag -D to specify the device number on which

	each GPU job must be launched. This is fine if your cluster has
only one GPU per node and you spawn one PE per node. A warning
message is issued in any case, as specifying manually the device
number should be reserved for sequential runs.

	You can use the flag +D to specify a list of devices on each
host. This is meant to be used, in general, with a job scheduler
such as PBS (see Execution flags..)

	Finally, when neither +D nor -D is used, the device are
selected on the base of the local rank. All GPUs on the nodes
used by the run should be free when the run is launched,
otherwise they may get oversubscribed.

Note

The +D flag does not work for a build without
MPICUDA (non CUDA aware build).

Cuda translator (C2CUDA.py).

One of the most interesting features of FARGO3D is that it can run on
GPUs. If you look the src/ directory, there are only very few
routines related with CUDA. The philosophy of the development of
FARGO3D was to avoid the kernel-writing process. Instead, following a
set of very simple rules, we were able to develop a python script that
translates the time-consuming C routines into CUDA kernels.

This section is a brief description of the rules and the process of
building CUDA kernels from C functions.

FARGO3D Mesh Functions

In FARGO3D all the time-consuming functions that are called during a
hydro or MHD time step involve, without exception, a 3D nested loop
over the computational mesh. We call hereafter these functions “mesh
functions”. The C to CUDA translator has been developed to convert
these “mesh functions” to CUDA kernels.

The components of any mesh function are:

	A header

	A function type and name

	Arguments

	Global variables

	Local variables

	A loop over the mesh

In some cases, the structure is a bit more complicated, including some
additional lines at the end of the main loop, but this will be discussed below.

The easiest example of a mesh function is the Pressure computation:

#include "fargo3d.h"

void ComputePressureFieldIso_cpu () {

 real* dens = Density->field_cpu;
 real* cs = Energy->field_cpu;
 real* pres = Pressure->field_cpu;

 int pitch = Pitch_cpu;
 int stride = Stride_cpu;
 int size_x = Nx;
 int size_y = Ny+2*NGHY;
 int size_z = Nz+2*NGHZ;

 int i;
 int j;
 int k;

 for (k=0; k<size_z; k++) {
 for (j=0; j<size_y; j++) {
 for (i=0; i<size_x; i++) {
 pres[l] = dens[l]*cs[l]*cs[l];
 }
 }
 }
}

As you see, the general structure is very simple. Here is the
explanation of the different blocks:

Header:

#include "fargo3d.h"

This block contains all the includes required to compile the code.

A function type:

void ComputePressureFieldIso_cpu () {

All the mesh functions must return a void. This is very important
because CUDA kernels cannot but return a void (this is one of CUDA
kernels limitations). Until now, the name of the function is not
important, but you can see that its suffix is (must be, actually) _cpu.

Arguments

In this simple case, the function has no argument, but in general, you
can have a wide range of arguments. The most commons are integers,
reals & Field variables.

Global variables

real* dens = Density->field_cpu;
real* cs = Energy->field_cpu;
real* pres = Pressure->field_cpu;
int pitch = Pitch_cpu;
int stride = Stride_cpu;
int size_x = Nx;
int size_y = Ny+2*NGHY;
int size_z = Nz+2*NGHZ;

This block is related to all the global variables that are not passed
by argument to the function. In practice, here you have all the fields
required to achieve the calculation, the size of each loop, and some
useful variables related to indices.

Local variables:

int i;
int j;
int k;

This block is devoted to variables that are neither passed as arguments nor global. Indices of the loop are always here, but it is possible to add any variable you want.

Main Loop:

for (k=0; k<size_z; k++) {
 for (j=0; j<size_y; j++) {
 for (i=0; i<size_x; i++) {
 pres[l] = dens[l]*cs[l]*cs[l];
 }
 }
}

This block is where all the expensive computation is done, and all the
parsing process was developed to pass this job to the GPU. Remember
that index l is a function of (i,j,k, pitch & stride), defined in
src/define.h. There is no need to define nor calculate it here, it is
done automatically at build time.

How the script works

In order to develop a general GPU “function”, there are a few problems that must be solved:

	Develop a proper CUDA header.

	Develop the kernel function, that is the core of the calculation.

	Develop a launcher (or wrapper) function, which is called from the C
code and constitutes the interface between the mainstream of
FARGO3D and the CUDA kernel.

	Perform communications between host and device (between CPU and GPU).

	Split the main loop into a lot of threads that are given to the CUDA cores.

	Develop a method for passing global variables to the kernel.

	Develop a method for passing complex structures (eg: Field) to a kernel.

	A method for switching between the C function and the CUDA function,
are run-time (so that we can, among other things, compare the results of execution on the
CPU to those on the GPU, in order to validate the correct GPU built).

You can see the structure of a mesh function is really very simple,
and you can see that in all the code, the structure of mesh functions
is the essentially the same. This allows us to develop an automatic
process to generate CUDA code. A series of special lines were
developed for simplifying the parsing process:

Here you have a complete example

//<FLAGS>
//#define __GPU
//#define __NOPROTO
//<\FLAGS>

//<INCLUDES>
#include "fargo3d.h"
//<\INCLUDES>

void ComputePressureFieldIso_cpu () {

//<USER_DEFINED>
 INPUT(Energy);
 INPUT(Density);
 OUTPUT(Pressure);
//<\USER_DEFINED>

//<EXTERNAL>
 real* dens = Density->field_cpu;
 real* cs = Energy->field_cpu;
 real* pres = Pressure->field_cpu;
 int pitch = Pitch_cpu;
 int stride = Stride_cpu;
 int size_x = Nx;
 int size_y = Ny+2*NGHY;
 int size_z = Nz+2*NGHZ;
//<\EXTERNAL>

//<INTERNAL>
 int i;
 int j;
 int k;
 int ll;
//<\INTERNAL>

//<MAIN_LOOP>

 i = j = k = 0;

#ifdef Z
 for (k=0; k<size_z; k++) {
#endif
#ifdef Y
 for (j=0; j<size_y; j++) {
#endif
#ifdef X
 for (i=0; i<size_x; i++) {
#endif
//<#>
 ll = l;
 pres[ll] = dens[ll]*cs[ll]*cs[ll];
//<\#>
#ifdef X
 }
#endif
#ifdef Y
 }
#endif
#ifdef Z
 }
#endif
//<\MAIN_LOOP>
}

As you see, all the main blocks are identified by some special
comments (C comments on one line begin with //), but also there
are two additional blocks.

We can make an abstract portrait of a general FARGO3D’s C mesh function:

//<FLAGS>
 Your preprocessor variables here (with a heading ``//``
 sign). __GPU and __NOPROTO must be defined, as in the example.
//<\FLAGS>

//<INCLUDES>
 your includes here ("fargo3d.h" must be in the list)
//<\INCLUDES>

function_name_cpu(arguments) { // <== the name MUST end in ``_cpu``

 //<USER_DEFINED>
 Some general instructions.
 //<\USER_DEFINED>

 //<EXTERNAL>
 type internal_name = external_variable;
 type* internal_pointer = external_pointer_cpu; // <== the name MUST end in ``_cpu``.
 //<\EXTERNAL>

 //<INTERNAL>
 type internal_name1 = initialization;
 type internal_name2;
 //<\INTERNAL>

 //<CONSTANT>
 //type internal_name1(1); //Note: these lines begin with a ``//``
 //type array_name2(size);
 //<\CONSTANT>

 //<MAIN_LOOP>
 #ifdef Z
 for (k=0; k<size_z; k++) {
 #endif
 #ifdef Y
 for (j=0; j<size_y; j++) {
 #endif
 #ifdef X
 for (i=0; i<size_x; i++) {
 #endif
 <#>
 Anything you want here.
 <\#>
 #ifdef X
 }
 #endif
 #ifdef Y
 }
 #endif
 #ifdef Z
 }
 #endif
 //<\MAIN_LOOP>

 //<LAST_BLOCK>
 Some final instruction(s).
 //<\LAST_BLOCK>

}

Below, there is an explanation of each field, and how to use it. You
can browse the source files of mesh functions to see examples. You can
have the list of the corresponding files by having a look at
src/makefile. There, you see a block called GPU_OBJBLOCKS. All the
mesh functions are found in the files that have the same prefix as
those found in this list, but with a .c suffix instead of
_gpu.o.

FLAGS

Identifier

<FLAGS> ... <\FLAGS>

Parsed as:

Textually, with heading comment sign removal.

Location:

Normally, at the top of a C file.

There are two flags that must be always included:

//#define __GPU
//#define __NOPROTO

They are important for a proper header building.

The __GPU can be used inside a C mesh function to issue specific
lines that should be run only on the GPU version, with the help of the
macrocommand:

#ifdef __GPU
#endif

INCLUDES

Identifier

<INCLUDES> ... <\INCLUDES>

Parsed as:

Textually

Location:

Normally, after the FLAGS block.

The INCLUDES block is the block where all the headers are.
This block must contain at least:

#include "fargo3d.h"

You may include any other header file.

Function name:

Identifier

Implicit, only a string

Parsed as:

function_name_cpu --> function_name_gpu (for the wrapper or launcher)
 --> function_name_kernel (for the associated CUDA kernel)

Location:

Normally, after the INCLUDES block.

Arguments:

Identifier

Implicit, only a string

Parsed as:

Field* f --> real f->field_gpu
non pointer argument --> textually

Location:

Normally, after the INCLUDES block.

Any built-in type is allowed, including FARGO3D’s real type. The only
structure allowed is the “Field” structure.

There are two constraints about the arguments field:

	All must be on the same line.

	The Field structures are the last arguments.

USER DEFINED:

Identifier

<USER_DEFINED> ... <\USER_DEFINED>

Parsed as:

Textually

Location:

After the function name.

This block can be very general. You can do here a lot of things,
because there is no limitation on syntax, everything inside is parsed
textually. In practice, we use this block mainly to do memory
transfers between host & device when they are needed, by issuing INPUT
and OUTPUT directives.

This block is a kind of pre kernel-execution instructions, will be
executed before the kernel launch, by the launcher (or wrapper)
function.

In a similar way, the post kernel-execution is the block called
LAST_BLOCK.

EXTERNAL:

Identifier

<EXTERNAL> ... <\EXTERNAL>

Parsed as:

All the external variables are parsed as arguments of the kernel.
type variable = global_variable_cpu --> function_name_kernel(type global_variable_gpu)
type* variable = global_variable_cpu --> function_name_kernel(type* global_variable_gpu)

Location:

After the USER_DEFINED block.

The CUDA kernels cannot see the global host variables. This block is
meant to grant access to these variables to the kernels so that all
the variables dealt with in this block are global. The main rule when
your draw a list of global variables inside the EXTERNAL block is:

	Avoid the use of all capital variables. Instead, declare another
variable with the same name but without capitals, and declare the
variable equal to the global variable. example: (real omegaframe =
OMEGAFRAME).

INTERNAL:

Identifier

<INTERNAL> ... <\INTERNAL>

Parsed as:

Textually

Location:

Normally, after the EXTERNAL block.

All the internal variables are work variables, with a very local
scope. You find here the indices of the loops, but you could include
any other variable that you need. Maybe, one of the most interesting
examples on how to use this block is found in compute_force.c.

CONSTANT:

Identifier

<CONSTANT> ... <\CONSTANT>

Parsed as:

The variables inside are moved to the constant memory if BIGMEM
is not defined. If BIGMEM is defined, the variables are moved instead to the
device's global memory. Example:

<CONSTANT>
// real ymin(Ny+2*NGHY+1);
<\CONSTANT>

Is parsed as:

#define ymin(i) ymin_s[(i)]

...

CONSTANT(real, ymin_s, some_number);

Here, some_number is a fraction of the constant memory size, calculated
by the parser.

...

#ifdef BIGMEM
#define ymin_d &Ymin_d
#endif
CUDAMEMCPY(ymin_s, ymin_d, sizeof(real)*(Ny+2*NGHY+1), 0, cudaMemcpyDeviceToDevice);

...

Location:

Normally, after the INTERNAL block.

This is one of the most complex blocks. It is very complex because the
process is complex. We need a way to pass our light arrays to the
constant memory of the GPU (for performance reasons). But there are
some cases where the problem is too big and the constant memory is not
enough. In this case, one can define the build flag BIGMEM. The main
portrait of the process is:

Declare as constant some global variables you want to use without
passing it as external, or use this block for light arrays, similar to
xmin, sxk, etc. This block reserves a constant memory segment
and copy the data to this segment. If BIGMEM is activated, the
constant memory is not used but instead, the global memory is
used. CUDAMEMCPY macrocommand is expanded in a manner that depends on
whether BIGMEM is defined and therefore performs the copy to the
correct location (constant or global memory). You can see this in
src/define.h. Note that there is a subtlety here: in case you use
BIGMEM, the constant memory is still used to store the pointer to the
array. In the other case, it stores directly the array itself. The
variables for this block are created in src/light_global_dev.c.

The scalar variables are passed as:

// type variable(1)

While the array variables are passed as:

// type variable(size_of_the_array)

Note that all this block is commented out in the C file, with // at
the beginning of each line.

MAIN LOOP:

Identifier

<MAIN_LOOP> ... <\MAIN_LOOP>

Parsed as:

The size of the loops is read and parsed. Also, the indices are initialized:

Example:

 #ifdef Z
 for (k=NGHZ; k<size_z; k++) {
 #endif
 #ifdef Y
 for (j = NGHY; j<size_y; j++) {
 #endif
 #ifdef X
 for (i = 0; i<size_x; i++) {
 #endif

is parsed to:

 #ifdef X
 i = threadIdx.x + blockIdx.x * blockDim.x;
 #else
 i = 0;
 #endif
 #ifdef Y
 j = threadIdx.y + blockIdx.y * blockDim.y;
 #else
 j = 0;
 #endif
 #ifdef Z
 k = threadIdx.z + blockIdx.z * blockDim.z;
 #else
 k = 0;
 #endif

 #ifdef Z
 if(k>=NGHZ && k<size_z) {
 #endif
 #ifdef Y
 if(j >=NGHY && j <size_y) {
 #endif
 #ifdef X
 if(i <size_x) {
 #endif

The content of the loop is parsed textually, but formally, the
content is part of another block: "<#> <\#>".

Location:

Before the initialization of the indices i,j,k.

This block is very particular because it must to be closed after the
close of the outermost loop. Remember that the content of the main
loop block, defined by <#>..<\#>, nested within the MAIN_LOOP
block, is parsed textually, so you cannot use global variables inside
it or the generated CUDA code will not work.

LOOP CONTAIN:

Identifier

<#> ... <\#>

Parsed as:

Textually.

Location:

After the innermost loop or where you want to have a textual
parsing inside the main_loop.

If you put the beginning of this block not exactly after the innermost
loop, you can make some interesting things. With this technique, you
can skip some lines devoted to the CPU. You can also achieve this with
the _GPU flag declared at the beginning, as shown earlier.

LAST_BLOCK

Identifier

<LAST_BLOCK> ... <\LAST_BLOCK>

Parsed as:

Textually.

Location:

The last block in the routine.

This block will be executed after the kernel execution. Useful for
reductions, for instance.

Common errors:

This section describes the most common errors at compilation time using the parser:

	The name of a block has white spaces: all blocks declarations must
be closed and after that white spaces are not allowed:

<BLOCK>__ --> wrong
<BLOCK> --> ok

	The pointer type is not a type: For the parser, the type of a
variable is a string without spaces. A pointer variables must be
declared as the pointer type:

real *rho --> wrong
real* rho --> ok (the type is real*)

	Some block was not properly closed: if you have not closed a block,
undefined behavior may result:

<BLOCK>
<BLOCK> --> wrong

<BLOCK>
</BLOCK> --> wrong

<BLOCK>
<\BLOCK> --> ok

	The end of the name function is not _cpu: The parser cannot find
the function name if it does not have a valid name, neither can it
invent a rule to make the wrapper and kernel names.

	The order of the arguments in the function: Remember, pointers to
Field structures are at the end.

	Only one variable per line may appear in the INTERNAL and EXTERNAL fields.

	Files which have been edited on a Windows machine, and in which
lines end with ‘rn’ instead of ending with ‘n’, will fail to be
converted to CUDA. Use a conversion procedure such as tr -d '\d' <
original_file.c > correct_line_ending.c prior to the build.

	Values relative to the mesh (such as zmin or xmed, etc.)
should be lowercase and should be followed by parentheses, not
square brackets, because they are considered as macrocommands. You
can use substep1_x.c as a template for that.

This list may be completed as we receive users’ feedback.

Execution flags.

FARGO3D has options that can be activated at run time in the form:

./fargo3d -flag parfile

where “flag” is a suitable flag. The extensive list is:

-m:

Warning

Starting from version 1.2, merging output files is the default
behavior and the -m flag is no longer needed. We have kept it for
backward compatibility.

Merge. This flag is used for writing files in the form fieldn.dat
instead fieldn_m.dat, with n,m integers (n is the output
number, m is the process number). This flag has relevance when you
work with MPI. In practice, after NINTERM time steps, you will
have an output, and each processor will write its own piece of mesh on
the disk. If -m flag is activated, they will write a single file with
all the data inside, in the right order, as if the data had been
written by a single process run.

-k:

Keep individual files from the different processes (do not merge
outputs). This flag is required if the different processes output to
different local disks, or if one dumps outputs including the ghost zones.

-o:

Redefine (overwrite) parameters on the command line. The following
argument must be enclosed between quotes. The parameters are case
insensitive. The syntax for the separators is relatively flexible. The
following example shows a valid instruction:

./fargo3d -o "outputdir=/scratch/test, nx:200 Ny=34" my_parameterfile.par

An error message is issued if the parameter does not exist, or is
redefined several times. If the parameter was defined in the parameter
file (rather than being implicitly set to its default value), an
information string is output at run start.

-s:

Restart from separate files. This flag must be used in the form:

./fargo3d -s n parfile

where n is the output number at which you want to restart the
run. Each normal output could be used as a restart file. It works for
Dat & VTK files. The output files used for the restart are separate,
i.e. they have the shape fieldn_m.dat, and must have been produced
by a run without the -m flag.

-S:

Restart from merged files. Same as before. It works for Dat & VTK
files. The only difference is that the output files used for the restart are merged,
i.e. they have the shape fieldn.dat, and must have been produced
by a run with the -m flag.

+S:

Restart and expand a run along the X dimension. This is typically used
to run a prior 2D calculation (radius, colatitude or Z) to enable a
disk to relax toward some equilibrium state. Once this equilibrium
state has been reached, the data is used to make up axisymmetric,
three-dimensional data cubes. Note that this is not considered as a
restart inside the code, but rather a fresh start, except that the
arrays are not filled with the initial condition but rather with the
data at output number n, expanded as necessary in X:

./fargo3d -m initial_2D_run.par
./fargo3d +S 100 -m -o 'Nx=628' initial_2D_run.par

In the example above the 2D output number 100 is used to fill the
arrays. The second run is this time 3D, as the number of zones in X
(azimuth) is now larger than one. Since technically this is not a
restart, the run will output its data at numbers 0, 1, etc. as for any
fresh start. The flag +S naturally also works if the mesh is
cylindrical or Cartesian. It can also be used to re-spawn a 1D run, so
as to make it 2D (radius, azimuth).

-D:

Specify manually the CUDA device. This flag must to be used in the form:

./fargo3d -D n parameters.par

where n is an integer.

With this flag, you can select manually the device where FARGO3D will run.

+D:

Specify the CUDA device file:

./fargo3d +D devfile parameters.par

where devfile is a text file which contains several lines. Each
line must contain a hostname (such as compute-0-34), followed by
one of the three following separators:

: (column), / (slash), or = (equal)

followed itself by a device number. Example of device file:

compute-0-0: 0
compute-0-0: 1
compute-0-1: 0
compute-0-1: 1

This device file is intended for a run on two nodes (compute-0-0 and
compute-0-1), each node having two GPUs (numbered 0 and 1 on each
node). If the run is spawned on nodes not specified in the device
file, the run will fail (technically, if the string returned by
gethostname() does not match the beginning of any line in the device
file).

The device file can be used together with the job scheduler (such as
torque or PBS) to obtain the list of free GPUs on the nodes of the
job, even if the job scheduler is not GPU aware. The public
distribution comes with a directory called jobs, in which you will
find an example of PBS job file called devfile that parses the
output of qstat to find the GPUs available.

-V:

The same as -S, but takes a .dat merged file, and makes VTK
files. Useful if you want to convert some .dat files into VTK files.

-B:

The same as -S, but takes a VTK merged file, and makes .dat
files. Useful if you want to convert some .vtk files into .dat files.

-t:

Timer. Very useful to follow the execution of a run and get an
estimate of the time remaining to complete.
If you want more detailed information, you can compile the code with
the PROFILE=1 option (shortcut: make prof) and it will provide
detailed information for each block of the time step. The -t flag is
not required in this case.

-f:

Execute one elementary time step and exits. Useful for some automatic
benchmarking (such as optimal block size determination), and also
(indirectly) useful to merge the output of several processes (see Tips, Tricks, Todos and Troubleshooting.)

-0:

Set the initial arrays (either with condinit() for a fresh start,
or reading an output if it is a restart), writes them to the disk, and
exits. Might be useful to merge prior outputs if FARGO3D has been run
without the flag -m.

-C:

Force execution of all functions on CPU (for a GPU built). Obviously
this flag does nothing if the executable was built for the CPU.

-p:

Instruct the code to execute a post restart hook upon loading the
files from a previous output. This flag is not used in any of the
files provided in the public release.

+/-# n:

Provides a numerical seed to the code, that is used for two things:

	The numerical seed is zero padded up to six digits and appended
to the name of the output directory.

	This seed, which is accessible from any part of the code as the
integer variable ArrayNb, will be used in general as a
random seed for the initial conditions (condinit.c in the
setup directory) or the file postrestarthook.c (but its use
may not be limited to that).

In the case of a restart, the name of the output directory is changed
prior to reading the data necessary of the restart, if the flag
+# is used. Otherwise, when the flag -# is used, the data is
read in the directory specified by the string outputdir of the
parameter file or the command line, then the outputdir parameter
is changed and the data is output to the new directory. This technique
is very useful to spawn a large number of jobs when used in
conjunction with $PBS_ARRAYID.

Example: we run a master simulation in output directory out:

./fargo3d -m -o 'outputdir=out' parameters.par

We then fork the results of this master simulation by restarting it
with many different random seeds:

./fargo3d -m -S 100 -# number -o 'outputdir=out' parameters.par

We use the output number 100 found in out for each of the runs
(since we use the -# flag). number is either provided by
$PBS_ARRAY or any shell loop index.

Finally, each of the runs can be subsequently restarted itself as
follows:

./fargo3d -m -S 200 +# number -o 'outputdir=out' parameters.par

We must now use the flag +#, as it is important that run 23 seeks
the data for restart in out000023 and not out.

When no restart is planned, one must use the +# flag instead of -#.

VTK Compatibility.

The Visualization Toolkit (VTK) is an open-source, freely available
software system for 3D computer graphics, image processing, and
visualization. This format is very powerful because there are a lot of
routines developed for it. The format used in FARGO3D is the Legacy
VTK format. We have tested the outputs with Visit.

The output rules in the section “Outputs” do not apply for vtk. The
main structure of a FARGO3D VTK file is:

	A header

	Coordinates

	Data

The VTK file is a mix between an ASCII file and a binary file. The
header is written in ASCII format, while the domains and fields are
written in binary format. This format is compatible with the -m
(merge) and with the -S/-s (restart) execution flags.

The fastest index is not i (x), but now is always j (y). On the other
hand, the structure of a loop for reading a vtk file is
coordinate-dependent. In Cartesian & Cylindrical coordinates, the
order is:

loop over k
 loop over i
 loop over j

while in Spherical coordinates, the order is:

loop over i
 loop over k
 loop over j

This format is useful when you are working with Visit and coordinate transformations.

If you have a run in .dat format and you want to convert its output to
vtk for displaying it with Visit, FARGO3D has two execution flags
devoted to this: -V (Dat2VTK) & -B (VTK2Dat). The flag -V is used when
you have an output file in dat and you want to convert it into
VTK. The opposite holds for the flag -B.

Visit has also a powerful python-script for converting your data into
vtk, but it is not included with FARGO3D.

Improving CUDA Performance

One can regard the action of a CUDA kernel on a mesh as the
distribution of elementary tasks (one mesh cell = one elementary task)
to the CUDA cores of the GPU. The CUDA cores are distributed within
streaming multiprocessors (SMP) on board the GPU. For instance, on a
Kepler K20 GPU, there are 13 SMP, with 192 cores each (for single
precision data), hence there are in total 2496 CUDA cores. In a
similar manner, splitting the whole task into threads that perform
elementary tasks on the CUDA core obeys a two-level hierarchy: the
global mesh must be split in logical blocks, and the blocks are
then split in threads. The user has to determine the size of the
blocks in X, Y and Z. A given block runs on a single SMP. If you
choose blocks that are too small, the SMPs are underused and the
performance is degraded. If you choose blocks that are too large, the
small amount of memory within the SMPs (48k) is saturated and the
extra data is stored within the device’s global memory (the “Video
RAM”), with a dramatic performance penalty. There are other
considerations that matter the choice of the CUDA blocks (for instance
memory alignment), but in short it is obvious that there is an optimal
block size that will maximize performance. This size depends on:

	the GPU

	the kernel itself (it is not the same for all kernels of FARGO3D).

By default, the block sizes used in a kernel execution are the numbers
provided in the .opt file, which are “reasonable” numbers, but they
are the same for all kernels (hence they cannot be optimal).

A makefile rule combined with python scripting has been developed in
order to do perform a systematic test of the performance of each
kernel, individually, as a function of the size of the CUDA blocks.

At compilation time, a file called setup.blocks (setup is the name of
your setup) is looked for in the corresponding src/setup directory
in order to provide to c2cuda.py the best block size for each
kernel. You could hand-write this file, but in practice, it is
automatically generated by the makefile when you execute the rule
called “blocks”:

make blocks setup=SETUP

It is necessary to use “setup” in lower case in order to avoid a
misunderstanding with the SETUP variable. Example:

make blocks setup=fargo

And you will see lines similar to:

CompPresIso 64 8 1 appended
CompPresAd was skipped.
compute_slopes was skipped.
compute_star was skipped.
compute_emf was skipped.
update_magnetic was skipped.
substep1_x 16 8 1 appended
substep1_y 32 4 1 appended
substep1_z was skipped.
substep2_a 64 8 1 appended
...

and a file called fargo.blocks inside setups/fargo is created
and is filled with this information, which represents the best block
size for each kernel. All the functions skipped were skipped because
they are not used in this particular setup.

It generally takes a few minutes. At the end, you have a .blocks file
similar to:

CompPresIso 64 8 1
substep1_x 16 8 1
substep1_y 32 4 1
substep2_a 64 8 1
...

Now, each time you compile the code, this file is taken by the
c2cuda.py script. In the best cases, you can increase the
performance in a 10/20%. In 3D massive MHD problems, you will have a
maximum gain.

Note: The .blocks file could be saved for the future if you want to
save time. In theory, the .blocks file is hardware dependent. Be
careful if you share the same file on multiple platforms.

MPICUDA

The considerations about GPU Direct and improvement of MPI
communications between GPUs have been exposed in section CUDA aware MPI implementations.

GPU vs CPU Benchmarking

Some acceleration factors

At the present time, FARGO3D has run on a limited number of platforms,
so we have only a limited amount of acceleration factors to quote
between CPU and GPU.

The FARGO_SPEEDUP macrocommand

We have developed a macrocommand named FARGO_SPEEDUP. You can see
its source in the file src/define.h, near the line 475. This
macrocommand is meant to give the speedup factor of a given CUDA kernel
with respect to its CPU counter. Its use is overly simple. Suppose
that we want to know the speedup ratio GPU vs CPU of the function
SubStep1_x(), for the setup fargo.

First, we need to identify where this function is invoked. It is
called near the line 73 in the file src/algogas.c:

#ifdef X
 FARGO_SAFE(SubStep1_x(dt));
#endif

Note that the invocation is wrapped in a FARGO_SAFE macrocommand,
the definition of which is… empty (see file src/define.h near
line 409). All the substeps of FARGO3D are wrapped similarly into this
macrocommand. In normal use, it does not do anything. However, it may
be redefined (see the alternate definitions commented out near line
409 in src/define.h), so as to provide useful debugging
diagnostics.

What we need to do here to get an automatic evaluation of the speedup
factor is simply to change our wrapper from FARGO_SAFE to
FARGO_SPEEDUP. Note that this new macrocommand will manipulate a
bit the function name (it will subsequently invoke
SubStep1_x_cpu() then SubStep1_x_gpu(). Since the C
preprocessor is unable to manipulate strings, we need to help it
identify where the sub-string of arguments begins, by inserting a comma:

#ifdef X
 FARGO_SPEEDUP(SubStep1_x,(dt)); // <= Note the comma before the '('
#endif

We now build the code for the target setup, with the PROFILING and GPU
options enabled:

make SETUP=mri GPU=1 PROFILING=1

and we run it:

./fargo3d -m in/mri.par

You should see an output such as:

Wall clock time elapsed during MPI Communications : 0.030 s
OUTPUTS 0 at Physical Time t = 0.000000 OK
TotalMass = 0.0271300282

Check point created

Check point restored

GPU/CPU speedup in SubStep1_x: 22.775
CPU time : 91.1 ms
GPU time : 4 ms

We see that the function is timed both in its CPU and GPU
version (this test was obtained on an Intel(R) Core(TM) i7 950 at 3.07
GHz, and on a Tesla C2050 card). We also
note how execution continues after the evaluation, so that periodically
an evaluation of the speedup of our target function is
provided. It is interesting to see how the macrocommand is expanded by
the preprocessor:

{
 SynchronizeHD ();
 SaveState ();
 InitSpecificTime (&t_speedup_cpu, "");
 for (t_speedup_count=0; t_speedup_count < 200; t_speedup_count++) {
 SubStep1_x_cpu (dt);
 }
 time_speedup_cpu = GiveSpecificTime (t_speedup_cpu);
 SynchronizeHD ();
 RestoreState ();
 InitSpecificTime (&t_speedup_gpu, "");
 for (t_speedup_count=0; t_speedup_count < 2000; t_speedup_count++) {
 SubStep1_x_gpu (dt);
 }
 time_speedup_gpu = GiveSpecificTime (t_speedup_gpu);
 printf ("GPU/CPU speedup in %s: %g\n", "SubStep1_x", time_speedup_cpu/time_speedup_gpu*10.0);
 printf ("CPU time : %g ms\n", 1e3*time_speedup_cpu/200.0);
 printf ("GPU time : %g ms\n", 1e3*time_speedup_gpu/2000.0);
};

(a proper indentation has been added for legibility.)

We see that the function is firstly executed 200 times on the CPU,
then 2000 times on the GPU. The respective single times on CPU and
GPU are inferred, and thus the speedup ratio.

Note that we have developed another useful macrocommand in the same
spirit, called FARGO_DEBUG, which is meant to automatically
compare the result of the CPU version of one routine with the result
of its GPU counterpart. It is presented in section Using FARGO_DEBUG.

Developing a complex setup

This is the advanced part of the manual. After this section, you will
be able to develop kernels, and complex routines inside FARGO3D.

One of the most useful features of FARGO3D is the fact that you do not
have to develop CUDA kernels yourself, neither even learn CUDA. All
the CUDA code is written automatically with the help of
scripts/c2cuda.py.

But developing FARGO3D is not only a matter of kernels. We will not
write an extensive documentation on each topic, but instead, we will
develop a routine in detail and, at the same time, give a brief
explanation .

We will develop routines for simulating an exploding 2D periodic
media, where the explosions are governed by a random generator, and we
will develop a cooling function for the gas. This cooling function
will be a kernel. The explosions will be modeled by energy spheres,
appearing at random positions, and at random times. Also, we will
include a magnetic field.

The name of our setup will be “explosions”.

Setup folder

The very first step is to make the directory where the setup will
be. We will store all the files inside setups/explosions. This setup
is very similar to the otvortex setup, so we can copy all the files
inside this setup and modify them. We need to keep explosions.bound,
explosions.opt, explosions.par and condinit.c files:

$ cd setups
$ mkdir explosions
$ cp otvortex/* explosions/
$ cd explosions
$ mv otvortex.par explosions.par
$ mv otvortex.opt explosions.opt ... etc for all files that begin with 'otvortex'

Do not forget to change the outputdir and the SetUp parameter
of the .par file (OutputDir outputs/explosions, SetUp
explosions). Also, we will add some viscosity and resistivity to our
setup (add the option VISCOSITY to the .opt file, and set
nu=0.001 and eta=0.001 in the parfile).

We can check that the setup can run:

$ make SETUP=explosions view
$./fargo3d -m setups/explosions/explosions.par

We see the otvortex setup, but with the name explosions.

Initial Condition

Because we want explosions at random times, this kind of setup cannot
be entirely dealt with in condinit.c. We will develop in the next
section an additional routine, called from the main loop, to handle
explosions. In the initial conditions we define a first explosion, at
a random position. The routine that we will create in the next
section will resemble this one, which we write in the file
setups/explosions/condinit.c. It should be similar to:

#include "fargo3d.h"

void CondInit() {

 int i,j,k;
 real yr, zr, yr0, zr0;
 int yi, zi;

 real* vx = Vx->field_cpu;
 real* vy = Vy->field_cpu;
 real* vz = Vz->field_cpu;
 real* bx = Bx->field_cpu;
 real* by = By->field_cpu;
 real* bz = Bz->field_cpu;
 real* rho = Density->field_cpu;
 real* e = Energy->field_cpu;

 real sphere_radius = 0.05;

 yr = YMIN+drand48()*(YMAX-YMIN);
 zr = ZMIN+drand48()*(ZMAX-ZMIN);
 yr0 = yr;
 zr0 = zr;

 if (yr > YMIN + (YMAX-YMIN)/2.0)
 yr -= (YMAX-YMIN);
 else
 yr += (YMAX-YMIN);
 if (zr > ZMIN + (ZMAX-ZMIN)/2.0)
 zr -= (ZMAX-ZMIN);
 else
 zr += (ZMAX-ZMIN);

 sphere_radius *= sphere_radius; //we take the square.

 for (k=0; k<Nz+2*NGHZ; k++) {
 for (j=0; j<Ny+2*NGHY; j++) {
 for (i=0; i<Nx; i++) {
 rho[l] = e[l] = 1.0;
 vx[l] = vy[l] = vz[l] = 0.0;
 bx[l] = by[l] = 0.0;
 bz[l] = 0.1;
 if ((Ymed(j)-yr)*(Ymed(j)-yr) + (Zmed(k)-zr)*(Zmed(k)-zr) <= sphere_radius)
 e[l] = 5.0;
 if ((Ymed(j)-yr0)*(Ymed(j)-yr0) + (Zmed(k)-zr)*(Zmed(k)-zr) <= sphere_radius)
 e[l] = 5.0;
 if ((Ymed(j)-yr)*(Ymed(j)-yr) + (Zmed(k)-zr0)*(Zmed(k)-zr0) <= sphere_radius)
 e[l] = 5.0;
 if ((Ymed(j)-yr0)*(Ymed(j)-yr0) + (Zmed(k)-zr0)*(Zmed(k)-zr0) <= sphere_radius)
 e[l] = 5.0;
 }
 }
 }
}

Note

the four tests account for the periodicity of the mesh, as they
take into account the main explosion and its replica in the
neighboring domains.

Time dependent explosions

Now, we want to add explosions at random times in our simulation. This
should be done at the end of each DT. Remember that DT is a
parameter chosen by the user in the parameter file, that sets the fine
grain temporal resolution of the code. It is not the time step imposed
by the CFL condition, which is usually (which should be, at least)
much shorter than DT.

The loop of time steps of total length DT is performed in AlgoGas
(), in the file src/algogas.c.
AlgoGas() is invoked in src/main.c, so we need to call our
explosions just there, after the execution of AlgoGas. You can see that
AlgoGas() is invoked with the pointer &PhysicalTime (so that
the value of this variable can be modified from within the routine).

Here we want an explosion rate that is constant in time, so that the
date does not matter to determine whether an explosion takes place or
not. Our new routine therefore just needs to know the time interval at
which it is called, which is DT. There is normally no need to pass
this variable as an argument, since it is a global upper case variable
that can be invoked anywhere in the C code.

So, the invocation of our new routine in src/main.c should be similar to:

...

AlgoGas(&PhysicalTime);

OurNewRoutine(); // Actually: Explode (); (see below)

MonitorGlobal...

...

Since we want to amend main.c and algogas.c, it is a good idea
to copy these files to out setup directory in order not to interfere
with the main version of FARGO3D. This way, everything we develop for
this complex kernel is self-contained within the setup
directory. There is a drawback, however: if we improve the main file
src/algogas.c at some later stage, this improvement will not be
reflected in the file setups/explosions/algogas.c until we
implement it manually in this file.

The name of the new routine will be Explode(), and will be stored
in the setups/explosions/condinit.c file:

 void Explode() {

 INPUT(Energy);
 OUTPUT(Energy);

 int i,j,k;
 real yr, zr;
 int yr0, zr0;
 real p;
 real* e = Energy->field_cpu;

 real Rate = 1.0; //Average number of explosions per unit time
 real sphere_radius = 0.05;

 sphere_radius *= sphere_radius; //we take the square.

 p = drand48();
 if (p < 1.0-exp(-DT*Rate)) {
 real sphere_radius = 0.1;

 yr = YMIN+drand48()*(YMAX-YMIN);
 zr = ZMIN+drand48()*(ZMAX-ZMIN);
 yr0 = yr;
 zr0 = zr;

 if (yr > YMIN + (YMAX-YMIN)/2.0)
 yr -= (YMAX-YMIN);
 else
 yr += (YMAX-YMIN);
 if (zr > ZMIN + (ZMAX-ZMIN)/2.0)
 zr -= (ZMAX-ZMIN);
 else
 zr += (ZMAX-ZMIN);

 sphere_radius *= sphere_radius; //we take the square.

 for (k=0; k<Nz+2*NGHZ; k++) {
 for (j=0; j<Ny+2*NGHY; j++) {
 for (i=0; i<Nx; i++) {
 if ((Ymed(j)-yr)*(Ymed(j)-yr) + (Zmed(k)-zr)*(Zmed(k)-zr) <= sphere_radius)
 e[l] = 5.0;
 if ((Ymed(j)-yr0)*(Ymed(j)-yr0) + (Zmed(k)-zr)*(Zmed(k)-zr) <= sphere_radius)
 e[l] = 5.0;
 if ((Ymed(j)-yr)*(Ymed(j)-yr) + (Zmed(k)-zr0)*(Zmed(k)-zr0) <= sphere_radius)
 e[l] = 5.0;
 if ((Ymed(j)-yr0)*(Ymed(j)-yr0) + (Zmed(k)-zr0)*(Zmed(k)-zr0) <= sphere_radius)
 e[l] = 5.0;
 }
 }
 }
 }
}

Note

The variable Rate selects the rate at which explosions take
place. In the case in which \(\textrm{Rate*DT} \ll 1\), we tend
towards a Poissonian statistics of explosions. When this condition
is not fulfilled, the statistics departs from Poisson’s statistics
because we can only have one explosion per DT.

Warning

We work on the physical coordinates rather than on the
indices so that the size of the spheres is independent of
resolution, and so that the output is independent on the number of
processors (this requires however that they all have the same
sequence of random numbers, hence that they have the same initial
seed).

Now, if you type make, all the code will be rebuilt.

Note we have added the INPUT/OUTPUT directives. INPUT/OUTPUT are
useful macrocommands that synchronizes the host and device memory if
it is needed (see GPU/CPU communications.). For example, if you run this setup
on the CPU, all the data is all the time on the CPU, but instead if
you run this setup on the GPU, before the execution of Explode(), it
is possible that the Field Energy is not fresh on the CPU, because all
the calculation was done on the GPU.

We could develop this routine as a kernel routine, with some suitable
structure for c2cuda.py; but in practice, this routine only works with
a few threads (all the threads inside a small circle), and the
remaining threads will stay idle. So, we can pay the cost of a
communication without committing a big mistake, and run the routine on
the CPU. Besides, and more importantly, it does not run within the
hydro/MHD loop, but once in a while.

Anyway, you can try a better implementation if you wish, but it is
not very important here.

Next, we develop a massively parallel function for the cooling
(damping of internal energy).

Damping function

In this section, we will develop a routine to cool the fluid with a
simple-minded, exponential damping law for the internal energy, in
order to simulate some kind of energy extraction from the system. The
law we want to apply is:

\[d_t e(t) = -\alpha e(t) \longrightarrow e(t) = C\exp{(-\alpha t)}\]

of which the implicit solution is:

\[e^{n+1}_i = \frac{e^n_i}{1+\alpha \Delta t}\]

which is stable for all \(\Delta t\).

First, we will create a file called edamp.c in
setups/explosion/. Inside, you should have something similar to:

//<FLAGS>
//#define __GPU
//#define __NOPROTO
//<\FLAGS>

//<INCLUDES>
#include "fargo3d.h"
//<\INCLUDES>

void Edamp_cpu(real dt) {

//<USER_DEFINED>
 INPUT(Energy);
 OUTPUT(Energy);
//<\USER_DEFINED>

//<INTERNAL>
 int i;
 int j;
 int k;
//<\INTERNAL>

//<EXTERNAL>
 real* e = Energy->field_cpu;
 real edamp = EDAMP;
 int pitch = Pitch_cpu;
 int stride = Stride_cpu;
 int size_x = Nx;
 int size_y = Ny+2*NGHY;
 int size_z = Nz+2*NGHZ;
//<\EXTERNAL>

//<MAIN_LOOP>
 for (k=0; k<size_z; k++) {
 for (j=0; j<size_y; j++) {
 for (i=0; i<size_x; i++) {
//<#>
 e[l] *= 1.0/(1.0+edamp*dt);
//<\#>
 }
 }
 }
//<\MAIN_LOOP>
}

Now, you must add this new routine to the makefile. In order to do
this without breaking the generality of the code, a file called
setup.objects was created. This file must to has two make variables:

MAINOBJ += routine_filename.o
GPUOBJ += routine_filename_gpu.o

where the second line is optional. In our case should be:

MAINOBJ += edamp.o
GPUOBJ += edamp_gpu.o

Before the compilation, do not forget to add in the parameter file
(setups/explosions/explosions.par) the variable called
EDAMP. Its first value could be 0.1.

Finally, we must add the execution line. In algogas.c, before the
invocation substep3(), we can add an invocation to our newly created
function:

Edamp_cpu(dt);

The code should compile in both CPU (sequential & MPI) and GPU
platforms, including a cluster of GPU’s. If you compile and run the
code in GPU mode, you will see some lines similar to:

OUTPUTS 0 at Physical Time t = 0.000000 OK
TotalMass = 2.0000000000
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

All the “!” symbols mean that at every time step, you have “volumic”
communications host<–>device (see sections GPU/CPU communications and
CUDA aware MPI implementations.) This is very expensive. This is because we force the
invocation of the CPU version of our new function, because we call
Edamp_cpu(dt), which triggers device to host and host to device
communications by means of the INPUT/OUTPUT directives. If you want
to avoid this, we must call the automatically generated CUDA kernel. Until
now, we are running the CPU version of our kernel.

Incorporating our kernel

Now, we will incorporate our new kernel into all the GPU-machinery
inside FARGO3D. The set of rules here is very general, and in theory,
if you follow them you should be able to develop any complex kernel.

First, we will keep a clean version of FARGO3D. In order to do that
you must to copy the file std/func_arch.cfg to your setup directory
(setups/explosions/). Also, we will need the file src/change_arch.c:

$ cp std/func_arch.cfg setups/explosions/
$ cp src/change_arch.c setups/explosions/

We will alter the files of the setup directory, but we will leave the
files of the main distribution untouched.

If we issue an “ls” command inside setups/explosions, we should see
something similar to:

algogas.c
condinit.c
explosions.bound
explosions.opt
explosions.units
change_arch.c
edamp.c
explosions.objects
explosions.par
func_arch.cfg
main.c

Now, we will add the prototype of this function in src/prototypes.h.

After the line:

ex void init_var(char*, char*, int, int, char*);

add:

ex void Edamp_cpu(real);

and after the line:

ex void addviscosity_sph_gpu(real);

add:

ex void Edamp_gpu(real);

Warning

The declaration of the _gpu must not be in the same block as
the _cpu functions, otherwise the code will not build. Keep
them grouped as they are.

Note

We cannot copy the file prototypes.h to out setup
directory because in the present version header files are parsed
from the src/ directory. However, it is harmless to declare
extra functions in prototypes.h. If they are unused with other
setups, no error nor warning message is issued.

Now, we need to be able to select which function is called (_gpu()
or _cpu()) by means of a function pointer. In the file
src/global.h, add the following line at the end:

void (*Edamp)(real);

We now have all the variables required to edit the ChangeArch()
function. This function allows to you to switch between a CPU or GPU
execution of your new kernel, without recompiling the code. In the
file change_arch.c, add the following lines:

Before the line:

while (fgets(s, MAXLINELENGTH-1, func_arch) != NULL) {

add:

Edamp = Edamp_cpu;

This line set the defaults value of the function pointer Edamp (it
calls the _cpu function). If we want to use the GPU version of our
function, we need to point to Edamp_gpu(). In practice this is
done with the func_arch.cfg file. To activate this possibility,
add the following lines at the end (before the last #endif):

if (strcmp(name, "edamp") == 0) {
 if(strval[0] == 'g'){
 Edamp = Edamp_gpu;
 printf("Edamp runs on the GPU\n");
 }
}

We eventually add the following line into the func_arch.cfg file:

Edamp GPU

Finally, we change the invocation of the energy damping into a more
general invocation (before substep3(), inside algogas.c):

Edamp(dt); //Calls either _cpu or _gpu, depending on its value

If you run the code again, you will see that nothing changed: “!” are
issued, indicating expensive communications, which are a clue that our
new function still runs on the CPU. This is because the
funch_arch.cfg file is taken by default from std/. In order to
change that, you must include the value of the FuncArchFile
parameter in explosions.par:

FuncArchFile setups/explosions/func_arch.cfg

Now, if you run the code, you will see lines similar to:

OUTPUTS 0 at Physical Time t = 0.000000 OK
TotalMass = 2.0000000000
!::::::::::::::::::::::::::::

And we have no more communications device<->host between outputs. The
“::” means that actually we still have some less expensive
communications between host and device for the periodicity. This can be avoided
with a proper build, but no further implementation is required at this
stage. See CUDA aware MPI implementations.

[image: _images/explosions.png]
A snapshot of the density field with the ‘explosions’ setup.

Using FARGO_DEBUG

We can use the macrocommand FARGO_DEBUG to check that the GPU
kernel and its CPU counterpart yield same results to machine
accuracy. Here this is done as follows: you simply have to wrap the
invocation of Edamp(dt) in algogas.c within the
macrocommand. As for the macrocommand FARGO_SPEEDUP presented in
the section GPU vs CPU Benchmarking, we need to insert a comma at the end of
the function name, so as to help the C preprocessor which cannot do
string analysis:

FARGO_DEBUG (Edamp,(dt)) // <<=== Notice the comma

We then compile the code with a GPU built (make SETUP=explosions
GPU=1) and run it:

$./fargo3d -m setups/explosions/explosions.par
....
....

Check point created

Executing Edamp_cpu(dt)
Dumping at #999 divb Emfy bz by bx QRight gasenergy gasdens Pressure Qs DensStar potential Moment_Minus_Z Moment_Plus_Z Vz_temp gasvz Moment_Minus_Y Moment_Plus_Y Vy_temp gasvy Moment_Minus_X Moment_Plus_X Vx_temp gasvx

Secondary Check point created

Check point restored

Executing Edamp_gpu(dt)
Dumping at #998 divb Emfy bz by bx QRight gasenergy gasdens Pressure Qs DensStar potential Moment_Minus_Z Moment_Plus_Z Vz_temp gasvz Moment_Minus_Y Moment_Plus_Y Vy_temp gasvy Moment_Minus_X Moment_Plus_X Vx_temp gasvx
List of fields that differ:
Skipping comparison of field Emfz used as a temporary work array
in file (as declared at line 0)
Skipping comparison of field DivRho used as a temporary work array
in file ../src/reduction_generic_gpu.cu (as declared at line 86)

What the code does is as follows:

	Prior to entering Edamp_cpu(dt), it creates a checkpoint of
all HD/MHD arrays.

	It then executes Edamp_cpu(dt) and dumps all arrays with the
arbitrary output number 999 (so that we can examine it in case of
problem). All arrays are dumped, not only the primitive
variables.

	It creates a secondary checkpoint with all the data updated by
Edamp_cpu(dt).

	It “rewinds” the execution flow by restoring the first checkpoint
created prior to the execution of Edamp_cpu(dt).

	It now executes Edamp_gpu(dt) (note that automatic GPU-CPU
communication is dealt with thanks to the INPUT/OUTPUT directives
as explained in GPU/CPU communications).

	It dumps all arrays, this time in output number 998. These arrays
should be the same as those dumped in 999, if the CPU and GPU
calculations yield indistinguishable results.

	It performs a comparison of the arrays with the secondary
checkpoint created previously. If any difference is found, a
message is printed on the terminal. Some arrays are skipped from
the comparison because they are used as temporary work arrays and
may be different on the CPU and GPU, without any impact on the
calculation. Here we see that all arrays are the same: GPU and CPU
yield indistinguishable results.

	In some other cases we may have differences to the machine
accuracy. The example below shows the output when wrapping
Substep1_x in FARGO_DEBUG:

Fields Vx_temp differ:
Minimum on GPU: -5.2721583979362551e-22
Minimum on CPU: 0
Maximum on GPU: 0
Maximum on CPU: 0
Minimum of GPU/CPU-1: -1
Maximum of GPU/CPU-1: -1
Minimum of GPU-CPU: 0
Maximum of GPU-CPU: 5.27216e-22
(Minimum of GPU-CPU)/max(abs(CPU)) 0
(Maximum of GPU-CPU)/max(abs(CPU)): 1

We show hereafter how the macrocommand is expanded at build time:

{
 SaveState ();
 printf ("Executing %s_cpu%s\n","Edamp","(dt)");
 Edamp_cpu (dt);
 DumpAllFields (999);
 SaveStateSecondary ();
 RestoreState ();
 printf ("Executing %s_gpu%s\n","Edamp","(dt)");
 Edamp_gpu (dt);
 DumpAllFields (998);
 CompareAllFields ();
 prs_exit (0);
 };

Note

Why would GPU and CPU routines give different results if the GPU
kernel is produced automatically from the CPU function ? Apart from
issues related to passing values to the kernel (in particular the
<CONSTANT> block), it may happen if you have a race condition
inherent to your kernel. What is a race condition? It happens
whenever the outcome of your kernel depends on the order in which
threads are executed. If the INPUT and OUTPUT fields of your kernel
are different, it is impossible to have a race condition. If,
however, a field appears both as INPUT and OUTPUT, the values of its
cells are used in the kernel, and also modified by it. This is the
case of the kernel of Edamp(). In this case, however,
everything is local: the final value of one zone only depends on
the value of that zone only, so it does not matter in which order
the CUDA threads process the mesh. If this value also depended on
the neighbors, we would have race conditions, and we would need to
split the kernel in two and use an intermediary array. For instance,
this is what we have done with SubStep2().

Summary

We have developed a somehow complex routine, interacting with the main
parts of FARGO3D. This example shows how to write a kernel in five
minutes, only taking care of prototypes and function pointers. Here is
a brief summary of this process:

	make a directory for the setup

	copy the important files you need into the new directory.

	If you will include routines, add the setup.objects file.

	Add the prototypes (to the file src/directory.h).

	Add the global function pointer (to global.h).

	Modify change_arch.c

	Add the function to func_arch.cfg and point correctly to this
file in your parameter file with FuncArchFile().

	Validate your new kernel using FARGO_DEBUG.

Tips, Tricks, Todos and Troubleshooting

With no particular order, we draw hereafter a list of questions that
may come to the user’s mind. This list will be updated according to
the users’ feedback.

How do I add a new parameter to a setup ?

Imagine you want to add a real variable RHOR (density on the right
side) to the set up sod1d (thus far the right value of the density
in the Riemann problem is hard-coded in condinit.c). Just add a
line such as the following in setups/sod1d/sod1d.par:

RhoR 0.1

and this is all. A python script which parses this file makes sure
that you have access to a global real variable named RHOR
throughout all the functions of the C code. You can now use this
variable to replace the hard-coded value in
setups/sod1d/condinit.c.

Note

The variable name in the .par file is case insensitive, but
C is case sensitive. The name is converted to upper case for the C
code. You must help the parser to automagically guess the type of
the variable. Here “0.1” works, but “.1” would not.

What is the way to merge the outputs of a run spawned with the -k flag ?

Spawning a run with the -k flag keeps one output file per
processor (for a given variable) instead of merging these files to
produce a unique, larger file.

Assume you run ran on 8 processors, and you want to merge the output
#5. You may issue on the command line, in FARGO3D’s main directory:

mpirun -np 8 ./fargo3d -s 5 -0 yourparfile

It will do the trick (restart from fragmented output -lower s-,
then merge outputs, and exit). Edit the above line according to your
needs, or insert it into a bash loop to merge the outputs of an entire
directory.

Note

This technique is non-destructive, in the sense that it does neither
change nor remove the individual outputs.

Warning

The above instruction requires that the whole simulation may fit on
your platform’s memory. If you issue it on a small laptop for a
simulation that ran on a large cluster, it may fail if there is not
enough RAM.

I see lots of “!” or “:” instead of “.” at execution. What does that mean?

This happens when you have a GPU built, and GPU-GPU communications are
not fully optimized. See the section GPU/CPU communications and
CUDA aware MPI implementations. Note that periodic boundary conditions are handled
like normal MPI communications, even on a one process run, so that
they transit through the host (CPU) if no CUDA aware version of MPI is
used.

Where my last run data has been output ?

The path to this directory is given by the parameter ‘OUTPUTDIR’ in
the parameter file that you specified in your run. If this parameter
begins with a ‘@’, this character should be substituted with the
content of the FARGO_OUT environment variable, if it exists. You
can also go to your home directory. There, a directory name
.fargo3drc has been produced, which contains two files:
history and lastout. The latter contains for each run issued a
timestamp and the path to the output directory. The former contains a
timestamp, the command that was issued to run the code, the number of
processes, the list of hosts (and devices for GPU builts) on which the
code was run, and the output directory. The lastout file is
obsolete. You may define an alias in your .bashrc file that
brings you automatically to the last output directory:

alias fo='cd `tail -n 1 $HOME/.fargo3drc/history`'

My build produces unexpected results. Some files should have been remade and they have not. How do I fix this ?

Although we have dedicated some care to the chain of rules of the
relatively complex build process, we may have failed to respect some
dependencies. If you believe that your make process is flawed, the
simplest solution is to note your build options with make info,
then issue a make mrproper and finally rebuild by issuing a new
make command followed by all your build options.

My code does not run much faster on the GPU than on the CPU. Why is this ?

There are several reasons for this.

	Your setup is very small, and your GPU(s) is/are underused.

	You have default block sizes in your .opt file that are far from
optimal, yielding a degradation of performance.

	You have a high end CPU and a low end GPU…

	You may not have tuned sufficiently the GPU build options in
src/makefile. Make sure to set them to your target GPU
architecture.

	You have a 2D, YZ setup (see the note below about reductions).

Warning

Reductions are operations on a whole mesh that amount to
obtaining a single number as a function of all cells’ content
(hence the name “reduction”). It may be the sum of the mass or
momentum content of all cells, or the minimum of all time steps
allowed on all cells as a result of the CFL criterion: the
reduction operation can be a sum, a min(), etc. We see that
there is at least one unavoidable reduction operation per time
step: the search for the maximum time step allowed. Reduction
operations are performed in a two stage process:

	A reduction in the X direction, at the end of which we obtain
a 2D array in YZ. This reduction is performed on board the
GPU, using the algorithm described in this pdf document [http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf]. This
corresponds to one of the few kernels that are written
explicitly in FARGO3D (instead of being produced by the Python
script). The user should never have to interfere with it.

	A further reduction in the Y an Z dimensions of the previous 2D
array. This is done on the host, as this has a low computational
cost. This operation involves a Device->Host communication only,
of a one cell thick single 2D array, which is not taken into
account when evaluating 2D communications that yield the “:”
diagnostic on the terminal (see CUDA aware MPI implementations).

The two stage process detailed above is generally not a problem, as we
expect most setups to have a number of zones in X (or azimuth) much
larger than the GPU vs CPU speed up factor (hence it is the first
stage -reduction on board of the GPU- that constitutes the time
consuming part). If however you have a YZ setup, the number of zones
in X is just one, and in this case it is the second stage of the
reduction process (on board the CPU) that constitutes the bottleneck:
it is like if the reduction was entirely performed on the CPU. If you
want to assess how much of your setup’s slowness can be put on the
account of this restriction, you may try to hard-code the time step in
src/algogas.c to see if this yields significant improvement. Also,
during this test, you have to deactivate all monitoring in the
.opt file, as monitoring requires reductions which are performed
as described above.

What is this @ sign at the beginning of the outputs’ path ?

Unless you have defined the environment variable FARGO_OUT, this
“@” sign is not used, and you may remove it if you wish. When the
FARGO_OUT environment variable is defined (for instance in your
job script or in your .bashrc file), its value substitutes the “@”
sign in your output path. If, for instance, you have:

OutputDir @mri/beta150

in your .par file, and you have defined in your .bashrc file the
following:

export FARGO_OUT='/data/myname/fargo3d'

then your run will output its data in
/data/myname/fargo3d/mri/beta150.

This trick is version control friendly: you define once for ever the
sub directory where you want your data to be, and the prefix part is
specified in the environment variable out of the version control, so
that if different persons work on the parameter file, it will not
trigger a sequence of different versions. You may have on one
platform:

export FARGO_OUT='/data2/pablo/fargo3d'

and on another one:

export FARGO_OUT='/scratch3/frederic/fargo3d'

and the same parameter file may be used without any editing.

I see that there are .par files in each setup directory, and the same .par files are found in the in/ sub directory. What is this for ?

The .par files found in the setup directories are necessary to
build FARGO3D: a python script uses them to determine the set of
global upper case variables that will be available everywhere
throughout the C code, with the value that the user defines for them
in his .par file. Therefore, these “setup” or “master”.par
files must include all variables that can ever be used by the setup,
and they must specify default, fiducial values for all parameters.

Although the user may run the code by using these “master” parameter
files, e.g.:

./fargo3d -m setups/fargo/fargo.par

this is not customary and any other parameter file, with different
parameter values than those specified in the “master” parfile, may be
used:

./fargo3d -m in/fargo.par

You may have a large set of parameters files with different values,
and you can run the code on them without any rebuild.

Note

If a parameter is not defined in a parameter file, the code will
take its default value from the “master” parameter file, unless
this parameter is specified as mandatory, in which case the user
must specify its value in any parameter file (otherwise an error
message is issued and the code stops.)

Warning

It is recommended to edit the parameter files of the in/
directory, rather than interfering with the “master” parameter
files found in the setups directories.

See also

Defining the parameter file.

I have noticed a directory named .fargo3drc in my home directory. What is it here for ?

This directory contains two text files (history and lastout)
which are updated at each new run. Every time a new run is spawned,
two lines are appended to the history file: a line indicating the
date and time at which the run was launched, and the command line
issued to launch the run. In addition, two new lines are appended to
the lastout file: a time stamp as previously, and the absolute
path of the output directory. It can be useful to parse the last line
of this file with a script to go directly where the output is
written:

alias fo='cd `tail -n 1 $HOME/.fargo3drc/lastout`'

The above line, in the .bashrc file, will define a command fo
(like Fargo3d Output) which changes the directory to the output
directory of the last run.

Known issue:

When the -o flag is used on the command line, the subsequent
quotation marks are not written to the file history. If one
wishes to cut and paste some line of this file to repeat a given run,
one must ensure to manually edit the line to restore the quotation
marks, when the flag -o is used.

How can I see the output of python scripts (in particular the CUDA files) ?

You will find below information to retrieve manually the output of
each of the python scripts involved at build stage. However, starting
from version 1.3, the build process creates an arch/ subdirectory
in which all the source files are archived, even those created
automatically such as those created by the boundary conditions scripts
or the c2cuda converter. It is therefore much easier than in
earlier versions to have a glance at the intermediate source files
automatically created at build time.

You may have noticed a long list of files being removed at the end of
the build process, especially on GPU builds. These files are
intermediate files such as CUDA files automatically produced by the
c2cuda script, etc. and the make process must remove them upon
completion in order to preserve dependencies. Failing to do so would
result, for instance, in the GPU version of a routine not being
rebuilt if its C source was edited. We do not issue explicitly this
rm command in the makefile. This is done automatically, out of our
control, because make knows that it must preserve dependencies.

This may be frustrating as you cannot have a look at the CUDA files or
boundary source codes produced by the Python scripts. This, sometimes,
can be useful to understand unexpected behaviors. Here we indicate the
manual procedure to produce all the intermediary files used during the
build process. Do not forget to remove them prior to a full build of
the code, or dependencies may be broken !

Creation of var.c:

In src/, issue:

python ../scripts/par.py ../setups/mri/mri.par ../std/stdpar.par

Naturally substitute the mri setup in the above line with your own setup.

Creation of param.h, param_noex.h, global_ex.h:

In src/, issue:

python ../scripts/varparser.py

Creation of rescale.c:

In src/, issue:

python ../scripts/unitparser.py mri

The rescale.c file is produced in the src directory

Creation of boundary source code:

In src/, issue:

python ../scripts/boundparser.py ../std/boundaries.txt ../std/centering.txt ../setups/mri/mri.bound

If you issue the command ls -ltr you will see new files with name
[y/z][min/max]_bound.c that you can examine. Note that since
periodic boundary conditions are not dealt with as other BCs but
rather with communications, they do not generate such files. For
instance, with the mri setup, you only have the y files, not the
z files.

Creation of the CUDA source code:

It can be done for any of the files which has same radix than those of
the list GPU_OBJBLOCKS in the makefile. We take the example here of
the file compute_emf.c. In the src/ directory, issue:

python ../scripts/c2cuda.py -i compute_emf.c -o foo.cu

In this command line, -i stands for the input, and -o for the
output. Note that we do not follow here the automatic rule that would
create ../bin/compute_emf_gpu.o. As a result, there is no risk to
break dependencies if we forget to remove the file created manually.
You can examine the file foo.cu and compare it to the input C
file. You may also try to invoke it with the -p flag that
implements a loop in the wrapper function to determine the best block
size.

Tweaking the CUDA executable for memory optimization

The default behavior of memory allocation on the GPU is to pad arrays
in order to respect the alignment of all rows. This may consume an
extra amount of memory, which is very parameter dependent. If you wish
to allocate memory like on the host, without padding, you may use the
compilation flag NOPITCH (e.g. in the opt file, add the following
line: FARGO_OPT += -DNOPITCH', and rebuild). The performance
degradation is negligible and you may be able to use slightly larger
arrays on a given GPU.

Speeding up reduction operations on platform >= 3.5

Reductions are by default implemented as described on a famous
presentation by Mark Harris (NVIDIA), which works for all platforms,
even old ones. On >= 3.5 platforms, one may use the possibility of
warp shuffle, which can significantly speed up reductions. In order to
do that, you must use the compilation flag WARPSHUFFLE (e.g. in the
opt file, add the following line: FARGO_OPT += -DWARPSHUFFLE', and
rebuild). The new kernel thus called reduces the amount of shared
memory used by the GPU. As described for standard reductions, the
reduction thus executed is done along the X direction only, and the
subsequent reduction in Y and Z is performed on the CPU.

A very incomplete TODO list

We have several projects or improvements in mind for FARGO3D. Some of
them are cosmetic time savers, others are more substantial. Among them:

	Since we can parse the C code to produce CUDA code, we can also, in
principle, produce automatically OpenCL code. This would enable
FARGO3D to run on non-NVIDIA’s GPUs, and on multi-core platforms.

	We would like to merge FARGO3D and the nested mesh structure of the
code JUPITER (developed by one of us but never publicly
released). This would require to have normal ghost zones in the X
direction (as for Y and Z), a 3D mesh splitting of processing
elements, and an adaptation of the ghost filling procedure. In this
page [http://adsabs.harvard.edu/abs/2014ApJ...782...65S] you can
see JUPITER at work with a number of nested meshes onto a giant
planet.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

_static/up.png

_images/alpha2d.png
0105

00%0

0075

0050

0045

0030

0015

0000

_static/up-pressed.png

_images/boundaries.png
SHST

S e o o o o e o o D D < A

S o < o o o < < o o o < o A < <
ole[e]e[e[e[e[e[e[e[e[e[e[o|e[e[e[e[e[e[e[o[e[e[e[e[e[e[e[o|e[e[e[e[e[e|e[o]e

_images/cluster-top.png
CPU core

CPU core

CPU core

CPU core| |CPU core

CPU core| |CPU core

CPU core| |CPU core

CPU core| |CPU core

CPU core

node 0

node 1

node 2

GPU 0

GPU 1

GPU 0

GPU 1

GPU 0

GPU 1

_images/alphavsr.png
008

007

005

005

004

003

002

001

000

001

_images/alphavst.png
008

005

004

002

000

500

000

FE)

2000

_images/gnuplot.png
120

100

80

60

40

20

50

100

150

200

250

300

350

01

0.01

0.001

0.0001

1e-05

_images/idl.png

_images/explosions.png
Field: gasdens

_images/output.png
Mesh

Binary file

_images/pt1.png
‘CPU core| | Process 0 ‘ ‘GPU 0’

‘CPU core| | Process 1 ‘ IGPU 1 ’
node 0

‘CPU core| | Process 2 ‘ IGPU 0’

‘CPU core| | Process 3 ‘ ‘GPU 1 ’
node 1

‘CPU core| | Process 4 ‘ ‘GPU 0’

‘CPU core| | Process 5 ‘ IGPU 1 ’

node 2

_images/make.png

_images/myblob.png
100 150 200 250 300 350

_images/pt2.png
‘CPU core| | Process 0 ‘ ‘GPU 0’

‘CPU core| | Process 3 ‘ IGPU 1 ’
node 0

‘CPU core| | Process 1 ‘ IGPU 0’

‘CPU core| | Process 4 ‘ ‘GPU 1 ’
node 1

‘CPU core| | Process 2 ‘ ‘GPU 0’

‘CPU core| | Process 5 ‘ IGPU 1 ’

node 2

_images/python.png

